Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:05:42.487Z Has data issue: false hasContentIssue false

The regulation of NAD L-glutamate dehydrogenase in Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

J. R. Kinghorn
Affiliation:
Department of Genetics, University of Glasgow, Glasgow G11 5JS
J. A. Pateman
Affiliation:
Department of Genetics, University of Glasgow, Glasgow G11 5JS
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wild-type cells of Aspergillus nidulans have undetectable NADL-glutamate dehydrogenase activity when utilizing glucose and high levels of NAD L-glutamate dehydrogenase when utilizing certain amino acids as sole carbon sources.

A mutant, designated gdhCl, has appreciable NAD-GDH activity when utilizing glucose as a carbon source. The gdhC1 mutation is semi-dominant and is located in linkage group III.

Type
Short Papers
Copyright
Copyright © Cambridge University Press 1974

References

REFERENCES

Adelberg, E. A., Mandel, M. & Chen, G. C. C. (1965). Optimal conditions for mutagenesis bN-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochemical and Biophysical Research Communications 18, 788795.CrossRefGoogle Scholar
Arst, H. N. & Cove, D. J. (1973). Nitrogen metabolite repression in Aspergillus nidulans. Molecular and General Genetics (in the Press).Google Scholar
Clutterbuck, A. J. & Cove, D. J. (1973). The genetic loci in Aspergillus nidulans. Handbook of Microbiology. The Chemical Rubber Company, Cleveland, Ohio (in the Press).Google Scholar
Cohen, B. L. (1972). Ammonium repression of extracellular protease in Aspergillus nidulans. Journal of General Microbiology 71, 293299.Google Scholar
Cohen, B. L. (1973). Control of extracellular protease in Aspergillus nidulans. Heredity 31, 132133.Google Scholar
Cohn, M. & Monod, J. (1953). Specific inhibition and induction of enzyme biosynthesis. Symposium of the Society of General Microbiology 2, 132149.Google Scholar
Cove, D. J. (1966). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochimica et Biophysica Acta 113, 5156.Google Scholar
Englesberg, E., Sheppard, D., Squires, C. & Meronk, F. (1969). An analysis of ‘revertants’ of a deletion mutant in the C gene of the L-arabinose gene complex in Escherichia coli B/r: Isolation of Initiator Constitutive Mutants (Ic). Journal of Molecular Biology 43, 281298.Google Scholar
Flavell, R. B. & Woodward, D. O. (1971). Metabolic role, regulation of synthesis, cellular localization and genetic control of the glyoxylate cycle enzymes in Neurospora crassa. Journal of Bacteriology 105, 200210.CrossRefGoogle ScholarPubMed
Hierholzer, G. & Holzer, H. (1963). Repression der synthese von DPM-abhangiger glutaminsaure dehydrogenase in Saccharomyces cerevisiae durch ammoniumionen. Bio-chemische Zeitschrift 339, 175182.Google Scholar
Hynes, M. J. (1972). Mutants with altered glucose repression of amidase enzymes in Aspergillus nidulans. Journal of Bacteriology 111, 717722.Google Scholar
Hynes, M. J. & Pateman, J. A. (1970). The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. I. Mutants unable to utilise acrylamide. Molecular and General Genetics 108, 97106.CrossRefGoogle Scholar
Jacoby, G. A. (1964). The induction and repression of amino acid oxidation in Pseudomonas fluorescens. Biochemical Journal 92, 18.CrossRefGoogle ScholarPubMed
Kinghorn, J. R. & Pateman, J. A. (1973). NADP and NAD L-glutamate dehydrogenase and ammonium regulation in Aspergillus nidulans. Journal of General Microbiology 78, 3946.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.Google Scholar
Magasanik, B. (1961). Catabolite repression. Cold Spring Harbor Symposia on Quantitative Biology 26, 249256.Google Scholar
Neidhardt, F. C. & Magasanik, B. (1956). Inhibitory effects of glucose on enzyme formation. Nature 178, 801802.Google Scholar
Neidhardt, F. C. & Magasanik, B. (1957). Reversal of the glucose inhibition of histidase biosynthesis in Aerobacter aerogenes. Journal of Bacteriology 73, 253259.CrossRefGoogle ScholarPubMed
Pateman, J. A. (1969). Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochemical Journal 115, 769775.Google Scholar
Pateman, J. A. & Cove, D. J. (1967). Regulation of nitrate reductase in Aspergillus nidulans. Nature 215, 12341239.Google Scholar
Soazzocchio, C. & Darlington, A. J. (1968). The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochimica et Biophysica Acta 166, 557568.Google Scholar
Strickland, W. N. (1971). Regulation of glutamate dehydrogenase in Neurospora crassa as a response to carbohydrate and amino acids in the media. Australian Journal of Biological Sciences 24, 905915.CrossRefGoogle ScholarPubMed