Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T00:23:11.288Z Has data issue: false hasContentIssue false

Properties of spontaneous mitotic recombination occurring in the presence of the rad52-1 mutation of Saccharomyces cerevisiae

Published online by Cambridge University Press:  14 April 2009

Merl F. Hoekstra
Affiliation:
Department of Microbiology, Loyola University, Stritch School of Medicine, Maywood, IL, USA60153
Tom Naughton
Affiliation:
Department of Microbiology, Loyola University, Stritch School of Medicine, Maywood, IL, USA60153
Robert E. Malone
Affiliation:
Department of Microbiology, Loyola University, Stritch School of Medicine, Maywood, IL, USA60153
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

All major recombination pathways in the yeast Saccharomyces cerevisiae require the RAD52 gene product. We have examined the effect of the rad52-1 mutation on spontaneous mitotic recombination between heteroalleles, and found that prototrophs are produced at frequencies significantly above reversion. This residual recombination occurs at a relatively uniform level at all of the loci examined. To help understand the role that RAD52 plays in mitotic recombination, we examined recombination between all pairwise combinations of six mutant alleles of the LYS2 gene. The rad52-1 mutation decreased the variation in amount of recombination between the various pairwise combinations as well as lowering the overall frequency of recombination. The reduced variation results in a different pattern of recombination in rad52-1 cells than in wild type. One interpretation of these results is that the RAD52 gene product, directly or indirectly, plays a role in the formation or the resolution of mismatches in heteroduplex DNA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

Adzuma, K., Ogawa, T. & Ogawa, H. (1984). Primary structure of the RAD52 gene in Saccharomyces cerevisiae. Molecular and Cellular Biology 4, 27352744.Google ScholarPubMed
Borts, R. H., Lichten, M., Hearn, M., Davidow, L. S. & Haber, J. E. (1984). Physical monitoring of meiotic recombination in Saccharomyces cerevisiae. Cold Spring Harbor Symposium XLIX, 6776.CrossRefGoogle Scholar
Chattoo, B. B., Sherman, F., Azubalis, D. A., Fjellstedt, T. A., Mehnert, D. & Ogur, M. (1979). Selection of lys2 mutants of the yeast Saccharomyces cerevisiae by the use of ±aminoadipate. Genetics 93, 5166.CrossRefGoogle ScholarPubMed
Chow, T. Y.-K. & Resnick, M. A. (1983). The identification of a deoxyribonuclease controlled by the RAD52 gene of Saccharomyces cerevisiae. In Cellular Responses to DNA Damage (ed. Friedberg, E. C. and Bridges, B. A.), p. 447. New York: Liss.Google Scholar
Game, J. C. (1983). Radiation-sensitive mutants and repair in yeast. In Yeast Genetics. Fundamental and Applied Aspects (ed. Spencer, J. F. T., Spencer, D. M. and Smith, A. R. W.), pp. 109137. New York: Springer.CrossRefGoogle Scholar
Game, J. C., Zamb, T. J., Braun, R. J., Resnick, M. A. & Roth, R. M. (1980). The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94. 5168.CrossRefGoogle ScholarPubMed
Golin, J. E. & Esposito, M. S. (1977). Evidence for joint genic control of spontaneous mutation and mitotic recombination during mitosis in Saccharomyces. Molecular and General Genetics 150, 127135.CrossRefGoogle Scholar
Haber, J. E. & Hearn, M. (1985). rad52-independent mitotic gene conversion in Saccharomyces cerevisiae frequently results in chromosome loss. Genetics 111, 722.CrossRefGoogle Scholar
Hawthorne, D. C. & Leupold, U. (1974). Suppressor mutations in yeast. Current Topics in Microbiology and Immunology 64, 1.CrossRefGoogle ScholarPubMed
Haynes, R. H. & Kunz, B. A. (1981). DNA repair and mutagenesis in yeast. In The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (ed. Strathern, J. N., Jones, E. W. & Broach, J. R.), pp. 371414. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Hoekstra, M. F. & Malone, R. E. (1985). Expression of the Escherichia coli dam gene in Saccharomyces cerevisiae: effect of in vivo adenine methylation on genetic recombination and mutation. Molecular and Cellular Biology 5, 610618.Google ScholarPubMed
Jackson, J. A. & Fink, G. R. (1981). Gene conversion between duplicated genetic elements in yeast. Nature 292, 306.CrossRefGoogle ScholarPubMed
Klein, H. L. & Petes, T. D. (1981). Intrachromosomal gene conversion in yeast. Nature 289, 144.CrossRefGoogle ScholarPubMed
Malone, R. E. (1983). Multiple mutant analysis of recombination in yeast. Molecular and General Genetics 189, 405412.CrossRefGoogle ScholarPubMed
Malone, R. E. & Esposito, R. E. (1980). The RAD52 gene is required for homothallic interconversion of mating type and spontaneous mitotic recombination in yeast. Proceedings of The National Academy of Sciences, USA 77, 503507.CrossRefGoogle ScholarPubMed
Malone, R. E., Golin, J. E. & Esposito, M. S. (1980). Mitotic recombination versus meiotic recombination in Saccharomyces cerevisiae. Current Genetics 1, 241248.CrossRefGoogle ScholarPubMed
Malone, R. E. & Hoekstra, M. F. (1984). Relationships between a hyper-rec mutation (rem1) and other recombination and repair genes in yeast. Genetics 107, 3348.CrossRefGoogle ScholarPubMed
Meselson, M. & Radding, C. (1975). A general model for genetic recombination. Proceedings of The National Academy of Sciences, USA 72, 358361.CrossRefGoogle ScholarPubMed
Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. (1981). Yeast transformation: a model system for the study of recombination. Proceedings of The National Academy of Sciences, USA 78, 63546358.CrossRefGoogle Scholar
Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. (1983). Genetic applications of yeast transformation with linear and gapped plasmids. In Methods in Enzymology, 101 (ed. Wu, R., Grossman, L. and Moldive, K.) pp. 228245. New York: Academic Press.Google Scholar
Prakash, L. & Taillon-Miller, P. (1981). Effects of the RAD52 gene on sister chromatid recombination in Saccharomyces cerevisiae. Current Genetics 3, 247250.CrossRefGoogle ScholarPubMed
Prakash, S., Prakash, L., Burke, W. & Montelone, B. A. (1980). Effect of the RAD52 gene on recombination in Saccharomyces cerevisiae. Genetics 94, 3150.CrossRefGoogle ScholarPubMed
Resnick, M. A. (1976). The repair of double-strand breaks in DNA: a model involving recombination. Journal of Theoretical Biology 59, 97.CrossRefGoogle Scholar
Resnick, M. A., Sugino, A., Nitiss, J. & Chow, T. (1984). DNA polymerases, deoxyribonucleases, and recombination during meiosis in Saccharomyces cerevisiae. Molecular and Cellular Biology 4, 28112817.Google ScholarPubMed
Schild, D., Konforti, B., Perez, C., Gish, W. & Mortimer, R. K. (1983 a). Isolation and characterization of yeast DNA repair genes. I. Cloning of the RAD52 gene. Current Genetics 7, 8592.CrossRefGoogle Scholar
Schild, D., Calderon, I. L., Contopoulou, R. & Mortimer, R. K. (1983 b). Cloning of yeast recombination repair genes and evidence that several are non-essential genes. In Cellular Responses to DNA Damage (ed. Friedberg, E. C. and Bridges, B. A.) pp. 417427. New York: Liss.Google Scholar
Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. 1983). The double strand break repair model for recombination. Cell 33, 2535.CrossRefGoogle ScholarPubMed
Zamb, T. J. & Petes, T. D. (1981). Unequal sister-strand recombination within yeast ribosomal DNA does not require the RAD52 gene product. Current Genetics 3, 125132.CrossRefGoogle Scholar