Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T19:50:07.477Z Has data issue: false hasContentIssue false

Postmeiotic segregation as a source of mosaics in diploid organisms

Published online by Cambridge University Press:  14 April 2009

John F. Leslie
Affiliation:
Department of Biological Sciences, Stanford University, Stanford, California 94305-2493, U.S.A.
Ward B. Watt
Affiliation:
Department of Biological Sciences, Stanford University, Stanford, California 94305-2493, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Postmeiotic segregation (PMS) of genetic variants occurs when a DNA heteroduplex formed during meiotic recombination goes undetected by repair enzymes and is transmitted unresolved to the meiotic products. PMS provides an alternative explanation for the origin of mosaics now attributed to half-chromatid mutation. In multicellular diploid eukaryotes, PMS could result in mosaic individuals with unusual migration patterns for proteins studied by gel electrophoresis. If the gonade were mosaic, complex progenies containing as many as six phenotypic classes at a single locus could be produced.

Type
Short Paper
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Bhat, N. R. (1949). A dominant mutant mosaic house mouse. Heredity 3, 243248.CrossRefGoogle Scholar
Burns, J. M. & Johnson, F. M. (1967). Esterase polymorphism in natural populations of a sulfur butterfly, Colias eurytheme. Science 156, 9396.CrossRefGoogle ScholarPubMed
Carpenter, A. T. C. (1982). Mismatch repair, gene conversion, and crossing-over in two recombination defective mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences (U.S.A.) 79, 59615965.CrossRefGoogle ScholarPubMed
Chovnick, A., Ballantyne, G. H. & Holm, D. G. (1971). Studies on gene conversion and its relationship to linked exchange in Drosophila melanogaster. Genetics 69, 179209.CrossRefGoogle ScholarPubMed
Fincham, J. R. S., Day, P. R. & Radford, A. (1979). Fungal Genetics, 4th ed.Oxford: Blackwell Scientific Publications.Google Scholar
Fjellner, B. (1979). Focal dermal hypoplasia in a 46, XY male. International Journal of Dermatology 18, 812815.CrossRefGoogle Scholar
Fogel, S., Mortimer, R., Lusnak, K. & Tavares, F. (1978). Meiotic gene conversion: A signal of the basic recombination event in yeast. Cold Spring Harbor Symposium, for Quantitative Biology 43, 13251341.CrossRefGoogle Scholar
Gartler, S. M. & Francke, U. (1975). Half-chromatid mutations: Transmission in humans? American Journal of Human Genetics 27, 218223.Google ScholarPubMed
Gutz, H. (1971). Site specific induction of gene conversion in Schizosaccharomyces pombe. Genetics 69, 317337.CrossRefGoogle ScholarPubMed
Gutz, H. & Leslie, J. F. (1976). Gene conversion: A hitherto overlooked parameter in population genetics. Genetics 83, 861866.CrossRefGoogle ScholarPubMed
Happle, R. & Lenz, W. (1977). Striation of bones in focal dermal hypoplasia: Manifestation of functional mosaicism? British Journal of Dermatology 96, 133137.CrossRefGoogle ScholarPubMed
Hilliker, A. J. & Chovnick, A. (1981). Further observations on intragenic recombination in Drosophila melanogaster. Genetical Research 38, 281296.CrossRefGoogle ScholarPubMed
Lamb, B. C. & Helmi, S. (1982). The extent to which gene conversion can change allele frequencies in a population. Genetical Research 39, 199217.CrossRefGoogle Scholar
Laporte, G., Serville, F. & Peant, J. (1979). Brachydactylie type A: Étude d'une famille basque. La Nouvelle Presse Médicale 8, 40954097.Google Scholar
Lenz, W. (1975). Half-chromatid mutations may explain incontinentia pigmenti in males. American Journal of Human Genetics 27, 690691.Google ScholarPubMed
Muller, A., Seger, J., Ganetta, M., Habibi, B., Lopez, M., DE Grouchy, J., Salmon, D. & Salmon, C. (1978). Mosaicisme Rh par mutation dans une geméllité monozygote. Revue Français de Transfusions et d' Immuno-hematology 21, 151164.CrossRefGoogle Scholar
Muller, H. J. (1920). Further changes in the white-eye series of Drosophila and their bearing on the manner of occurrence of mutation. Journal of Experimental Zoology 31, 443473.CrossRefGoogle Scholar
Nagylaki, A. (1983 a). Evolution of a large population under gene conversion. Proceedings of the National Academy of Sciences (USA) 80, 59415945.CrossRefGoogle ScholarPubMed
Nagylaki, T. (1983 b). Evolution of a finite population under gene conversion. Proceedings of the National Academy of Sciences (USA) 80, 62786281.CrossRefGoogle ScholarPubMed
Paquette, N. & Rossignol, J.-L. (1978). Gene conversion spectrum of 15 mutants giving post-meiotic segregation in the b2 locus of Ascobolus immersus. Molecular and General Genetics 163, 313326.CrossRefGoogle Scholar
Romans, P. (1980 a). Gene conversion in mei-9a, a crossover defective mutant in Drosophila melanogaster. Drosophila Information Service 55, 130132.Google Scholar
Romans, P. (1980 b). Effects of purine selection on survival of Drosophila mosaic for xanthine dehydrogenase (XDH) activity. Drosophila Information Service 55, 132134.Google Scholar
Rossignol, J. L., Paquette, N. & Nicolas, A. (1978). Aberrant 4:4 asci, disparity in the direction of conversion, and frequencies of conversion in Ascobolus immersus. Cold Spring Harbor Symposium for Quantitative Biology 43, 13431351.CrossRefGoogle Scholar
Therman, E. & Kuhn, E. M. (1981). Mitotic crossing-over and segregation in man. Human Genetics 59, 93100.CrossRefGoogle ScholarPubMed
Thuriaux, P., Minet, M., Munz, P., Ahmad, A., Zbaereu, D. & Leupold, U. (1980). Gene conversion in nonsense suppressors of Schizosaccharomyces pombe. II. Specific marker effects. Current Genetics 1, 8995.CrossRefGoogle ScholarPubMed
Walsh, J. B. (1983). Role of biased gene conversion in one-locus neutral theory and genome evolution. Genetics 105, 461468.CrossRefGoogle ScholarPubMed
Watt, W. B. (1972). Intragenic recombination as a source of population genetic variability. American Naturalist 106, 737752.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1982). Genetic Recombination. Understanding the Mechanisms. London: John Wiley.Google Scholar
Wolff, G., Hameister, H. & Ropers, H. H. (1978). X-linked mental retardation: Transmission of the trait by an apparently unaffected male. American Journal of Medical Genetics 2, 217224.CrossRefGoogle ScholarPubMed
Yu-Sun, C. C., Wickramartne, M. R. T. & Whitehouse, H. L. K. (1977). Mutagen specificity in conversion pattern in Sordaria brevicollis. Genetical Research 29, 6581.CrossRefGoogle Scholar