Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:20:11.991Z Has data issue: false hasContentIssue false

The population genetics of the H-2 polymorphism in European and North African populations of the house mouse (Mus musculus L.)

Published online by Cambridge University Press:  14 April 2009

J. H. Nadeau
Affiliation:
Abteilung Immungenetik, Max-Planck-Institut für Biologie, Corrensstrasse 42, 7400 Tübingen, Federal Republic of Germany
E. K. Wakeland
Affiliation:
Abteilung Immungenetik, Max-Planck-Institut für Biologie, Corrensstrasse 42, 7400 Tübingen, Federal Republic of Germany
D. Götze
Affiliation:
Abteilung Immungenetik, Max-Planck-Institut für Biologie, Corrensstrasse 42, 7400 Tübingen, Federal Republic of Germany
J. Klein
Affiliation:
Abteilung Immungenetik, Max-Planck-Institut für Biologie, Corrensstrasse 42, 7400 Tübingen, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two hundred and two house mice (Mus musculus L.) from 29 populations in Europe and North Africa were typed for 16 H-2K and 17 H-2D antigens, each antigen defining a different allele. Among the 13 best characterized populations, 1 to 4 common and 3 to 20 rare antigens were observed. However, an average of 37% of the H-2K and 39% of the H-2D antigens remain to be identified. Ninety-four percent of the 50 mice tested were heterozygous for H-2K antigens and 89% for H-2D antigens. In 4 of the 8 populations tested, the most common H-2K and H-2D antigens occurred in the same individual more often than if randomly associated. Associations between common H-2K and H-2D antigens and excess heterozygosities may be the consequence of the small size and instability of populations composed primarily of related individuals. Estimates of the genetic distances between populations revealed that Danish, Egyptian, and several of the Orkney Island populations were related. These were the only populations in which metacentric chromosomes were not found. In contrast, populations which were antigenically different were also karyotypically different, regardless of taxonomic status of allozymic similarity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

Anderson, P. K. (1970). Ecological structure and gene flow in small mammals. Symposium of the Zoological Society of London 26, 299325.Google Scholar
Bennett, D. (1975). The T-locus of the mouse. Cell 6, 441454.CrossRefGoogle Scholar
Berry, R. J., Bonner, W. N. & Peters, J. (1979). Natural selection in House mice (Mus musculus) from South Georgia (South Atlantic Ocean). Journal of Zoology 189, 385398.CrossRefGoogle Scholar
Britton-Davidian, J., Bonhomme, F., Croset, H., Capanna, E. & Thaler, L. (1980). Genetic variation in House mouse populations characterized by different karyotypes. Comptes Rendus de l' Academie des Sciences 290, 195199.Google Scholar
Capanna, E., Gropp, A., Winking, H., Noack, G., & Civitelli, M.-V. (1973). Robertsonian metacentrics in the mouse. Chromosoma 58, 431–353.Google Scholar
Cavalli-Sforza, L. (1973). Phylogenetic analysis. In Histocompatibility Testing 1972 (ed. Dausset, J. and Colombani, J.), pp. 1719. Copenhagen: Munksgaard.Google Scholar
Da Silva, F. P., Hoecker, G. F., Day, N. K., Vienne, K. & Rubenstein, P. (1978). Murine complement component 3: Genetic variation and linkage to H-2. Proceedings of the National Academy of Sciences U.S.A. 75, 963965.CrossRefGoogle Scholar
Duncan, W. B., Wakeland, E. K. & Klein, J. (1979 a). Histocompatibility-2 system in wild mice. VIII. Frequencies of H-2 and la antigens in wild mice from Texas. Immuno-genetics 9, 261271.CrossRefGoogle Scholar
Duncan, W. R., Wakeland, E. K. & Klein, J. (1979 b). Heterozygosity of H-2 loci in wild mice. Nature 281, 603605.CrossRefGoogle ScholarPubMed
Gropp, A., Winkling, H., Zech, L. & Mueller, H. (1972). Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 39, 265288.CrossRefGoogle ScholarPubMed
Götze, D., Nadeau, J. H., Wakeland, E. K., Berry, R. J., Bonhomme, F., Egorov, I. K., Hjorth, J. P., Hoogstraal, H., Vives, J., Winking, H. & Klein, J. (1980). Histocompatibility-2-system in wild mice. X. Frequencies of H-2 and la antigens in wild mice from Europe and Africa. Journal of Immunology 124, 26752681.CrossRefGoogle Scholar
Hoffman, H. A. & Griesraber, C. K. (1976). Genetic studies of murine catalase: regulation of multiple molecular forms of kidney catalase. Biochemical Genetics 14, 5966.CrossRefGoogle ScholarPubMed
Hunt, W. G. & Selander, R. K. (1973). Biochemical genetics of hybridisation in European House mice. Heredity 31, 1133.CrossRefGoogle ScholarPubMed
Kirby, G. C. (1975). Heterozygote frequencies in small populations. Theoretical population Biology 8, 3148.CrossRefGoogle Scholar
Klein, J. (1975). Biology of the Mouse Histocompatibility-2 Complex. New York: Springer-Verlag.CrossRefGoogle Scholar
Klein, J. (1979). The major histocompatibility complex of the mouse. Science 203, 516521.CrossRefGoogle ScholarPubMed
Klein, J. & Hammerberg, C. H. (1977). The control of differentiation by the T complex. Immunological Reviews 33, 70104.CrossRefGoogle ScholarPubMed
Klein, J., Götze, D., Hsu, E., Nadeau, J. H. & Wakeland, E. K. (1980). Population immunogenetics of the murine H-2 and i systems. Symposium of the Zoological Society of London. (In the Press.)Google Scholar
Levene, H. (1949). On a matching problem arising in genetics. Annals of Mathematics and Statistics 20, 9194.CrossRefGoogle Scholar
Lewontin, R. C. & Dunn, L. C. (1960). The evolutionary dynamics of a polymorphism in the House mouse. Genetics 45, 705722.CrossRefGoogle ScholarPubMed
Nadeau, J. H. & Klein, J. (1980). Allozymic variation in European and North African populations of House mice (Mus musculus L.). (In preparation.)Google Scholar
Nei, M. (1972). Genetic distance between populations. The American Naturalist 106, 283292.CrossRefGoogle Scholar
Piazza, A. & Viganotti, C. (1960). Evolutionary trees and HLA polymorphism. In Histocompatibiliiy Testing 1972 (ed. Dausset, J. and Colombani, J.), pp. 732738. Copenhagen: Munksgaard.Google Scholar
Schwarz, E. & Schwarz, H. K. (1943). The wild and commensal stocks of the House mouse, Mus musculus Linnaeus. Journal of Mammalogy 24, 5972.CrossRefGoogle Scholar
Selander, R. K. (1970). Behaviour and genetic variation in natural populations. American Zoologist 10, 5366.CrossRefGoogle ScholarPubMed
Selander, R. K., Hunt, W. G. & Yang, S. Y. (1969). Protein polymorphism and genie heterozygosity in two European subspecies of the House mouse. Evolution 23, 379390.CrossRefGoogle Scholar
Ursin, E. (1952). Occurrence of voles, mice, and rats (Muridae) in Denmark, with a special note on a zone of intergradation between two subspecies of the House mouse (Mus musculus L.). Videnskabelige Meddelelser fra den Danske Naturhistoriske Foreining 114, 217244.Google Scholar
Yamazaki, K., Boyse, E. A., Mike, V., Thaler, H. T., Mathieson, B. J., Abbott, J., Boyse, J., Zayas, Z. A. & Thomas, L. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. Journal of Experimental Medicine 144, 13241335.CrossRefGoogle ScholarPubMed
Yamazaki, K., Yamaguchi, M., Andrews, P. W., Peake, B. & Boyse, E. A. (1978). Mating preferences of F2 segregante of crosses between MHC-congenic mouse strains. Immunogenetics 6, 253259.CrossRefGoogle Scholar
Zaleska-Rutczynska, Z. & Klein, J. (1977). Histocompatibility-2 system in wild mice. V. Serologie analysis of sixteen B10.W congenic Lines. Journal of Immunology 119, 19031906.CrossRefGoogle Scholar