Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T08:30:18.649Z Has data issue: false hasContentIssue false

The plasmid curing action of imipramine in Escherichia coli K12

Published online by Cambridge University Press:  14 April 2009

J. Molnár
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
I. Béládi
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
I. B. Holland
Affiliation:
Department of Genetics, School of Biological Sciences, University of Leicester, Leicester, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Curing of an F-prime plasmid by imipramine was most efficient on bacteria growing semianaerobically at 37 °C. The plasmid curing effect of imipramine was increased in the presence of methylene blue, whilst fluorescein, chlorpromazine-sulphoxide and tetraoxyanthrachinon antagonized the plasmid curing action of the drug. In addition to its plasmid curing effect, imipramine treatment selected for Lon mutants at high frequency. Lon mutants show increased resistance to the drug but cured strains, if Lon+, are not resistant.

Type
Short Papers
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Alföldi, L., Raskó, I. & Kerekes, E. (1968). L-serine deaminase of E. coli. Journal of Bacteriology 96, 15121518.CrossRefGoogle Scholar
Clowes, R. C. & Hayes, W. (1968). Experiments in Microbial Genetics. Oxford: Blackwell.Google Scholar
Fishman, V. & Goldenberg, H. (1963). Metabolism of chlorpromazine. IV. Identification of 7-hydroxychlorpromazine and its sulphoxide and desmethyl derivatives. Proceedings of the Society of Experimental Biology and Medicine 112, 501506.CrossRefGoogle ScholarPubMed
Hirota, Y. (1960). Effect of acridine dyes on mating type factors in E. coli. Proceedings of the National Academy of Sciences, U.S.A. 46, 5764.CrossRefGoogle Scholar
Lerman, L. S. (1963). The structure of DNA-acridine complex. Proceedings of the National Academy of Sciences, U.S.A. 49, 94102.CrossRefGoogle ScholarPubMed
Mándi, Y., Molnár, J., Holland, I. B. & Béládi, I. (1976). Efficient curing of an Escherichia coli F-prime plasmid by phenothiazines. Qenetical Research 26, 109111.Google Scholar
Mitsuhashi, S., Harada, K. & Kameda, M. (1961). Elimination of transmissible drugresistance by treatment with acriflavine. Nature 189, 947.CrossRefGoogle Scholar
Molnár, J., Király, J. & Mándi, Y. (1975). Antibacterial action and R-factor inhibiting activity of chlorpromazine. Experimentia 31, 444446.CrossRefGoogle ScholarPubMed
Molnár, J., Holland, I. B. & Mándi, Y. (1977). Selection of lon mutants in Escherichia coli by treatment with phenothiazines. Genetical Research 30, 1320.CrossRefGoogle Scholar
Salisbury, V., Hedges, R. W. & Datta, N. (1972). Two modes of curing transmissible bacterial plasmids. Journal of General Microbiology 70, 443452.CrossRefGoogle ScholarPubMed
Stirm, S., Bessler, W., Fehmel, F., Freund-Mölbert, E. & Thurow, H. (1974). Uber eine bakteriphagen-induzierte colänsäure-depolymerase. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (I. Abt. Orig. A) 226, 2635.Google Scholar
Yamabe, S. (1973). Further fluorospectrophotometric studies on the binding of acridine orange with DNA. Effects of thermal denaturation of DNA and additions of spermine, kanamycin, dihydrostreptomycin, methylene blue and chlorpromazine. Archives of Biochemistry and Biophysics 154, 1927.CrossRefGoogle ScholarPubMed