Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T08:49:25.226Z Has data issue: false hasContentIssue false

Phosphatase regulation in Aspergillus nidulans: responses to nutritional starvation

Published online by Cambridge University Press:  14 April 2009

Mark X. Caddick
Affiliation:
Department of Genetics, Ridley Building, The University, Newcastle upon Tyne NE1 7RU, England
Alan G. Brownlee
Affiliation:
Department of Genetics, Ridley Building, The University, Newcastle upon Tyne NE1 7RU, England
Herbert N. Arst Jr
Affiliation:
Department of Genetics, Ridley Building, The University, Newcastle upon Tyne NE1 7RU, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The regulation of the syntheses of a number of phosphatases in the fungus Aspergillus nidulans has been examined. Levels of the intracellular alkaline phosphatase P11 are increased by starvation for carbon, nitrogen, phosphorus or sulphur. There is, however, no evidence that any of the wide domain regulatory genes which mediate sufficiency-triggered repression for each of these elements involved. A possible interpretation is that all four forms of starvation result in accumulation of an inducing metabolite. The palcA gene has been identified as a wide domain, probably positive-acting regulatory gene mediating phosphate repression. The palcA product controls the syntheses of alkaline phosphatase PI, acid phosphatases PIII and PV, a phosphodiesterase lacking phosphomonoesterase activity and probably also a phosphate permease. Mutations resulting in derepression of phosphate-repressible activities at acid but not alkaline growth pH define a gene designated pacJ. pacJ mutations also confer arsenate resistance at low but not high pH. It is likely that phosphate derepression and arsenate resistance result from reduced uptake of H2PO4. Finally, phosphatase regulation might be less complex than previously thought. Mutations designated r and mapping at several loci apparently have no effect on phosphatase. They enhance phosphatase colony staining but this occurs even if the phosphatase substrates are omitted from the staining mixtures. r mutations appear to promote reactions converting the diazonium salts used for phosphatase staining to coloured precipitates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

Al Taho, N. M., Sealy-Lewis, H. M. & Scazzocchio, C. (1984). Supressible alleles in a wide domain regulatory gene in Aspergillus nidulans. Current Genetics 8, 245251.CrossRefGoogle Scholar
Arst, H. N. Jr. (1981). Aspects of the control of gene expression in fungi. Symposia of the Society for General Microbiology 31, 131160.Google Scholar
Arst, H. N. Jr. (1982). A near terminal pericentric inversion leads to nitrogen metabolite derepression in Aspergillus nidulans. Molecular and General Genetics 188, 490493.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. (1984). Regulation of gene expression in Aspergillus nidulans. Microbiological Sciences 1, 137141.Google ScholarPubMed
Arst, H. N. Jr. & Bailey, C. R. (1977). The regulation of carbon metabolism in Aspergillus nidulans. In Genetics and Physiology of Aspergillus (ed. Smith, J. E. and Pateman, J. A.), pp. 131146. London: Academic Press.Google ScholarPubMed
Arst, H. N. Jr. & Bailey, C. R. (1980). Genetic evidence for a second asparaginase in Aspergillus nidulans. Journal of General Microbiology 121, 243247.Google ScholarPubMed
Arst, H. N. Jr. Brownlee, A. G. & Cousen, S. A. (1982). Nitrogen metabolite repression in Aspergillus nidulans: a farewell to tamA? Current Genetics 6, 245257.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Cove, D. J. (1969). Methylammonium resistance in Aspergillus nidulans. Journal of Bacteriology 98, 12841293.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Cove, D. J. (1973). Nitrogen metabolite repression in Aspergillus nidulans. Molecular and General Genetics 126, 111141.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr., Rand, K. N. & Bailey, C. R. (1979). Do the tightly linked structural genes for nitrate and nitrite reductases in Aspergillus nidulans form an operon? Evidence from an insertional translocation which separates them. Molecular and General Genetics 174, 89100.CrossRefGoogle Scholar
Arst, H. N. Jr. & Scazzocchio, C. (1985). Formal genetics and molecular biology of the control of gene expression in Aspergillus nidulans. In Gene Manipulations in Fungi, Chapter 13 (ed. Bennett, J. W. and Lasure, L. L.), pp. 309343. New York: Academic Press.CrossRefGoogle Scholar
Arst, H. N. Jr., Tollervey, D. W. & Sealy-Lewis, H. M. (1982). A possible regulatory gene for the molybdenum containing cofactor in Aspergillus nidulans. Journal of General Microbiology 128, 10831093.Google ScholarPubMed
Bailey, C. & Arst, H. N. Jr. (1975). Carbon catabolite repression in Aspergillus nidulans. European Journal of Biochemistry 51, 573577.CrossRefGoogle Scholar
Bal, J., Kajtaniak, E. M. & Pieniazek, N. J. (1977). 4-nitro-quinoline-1-oxide: a good mutagen for Aspergillus nidulans. Mutation Research 56, 153156.CrossRefGoogle Scholar
Brownlee, A. G. & Arst, H. N. Jr. (1983). Nitrate uptake in Aspergillus nidulans and involvement of the third gene of the nitrate assimilation gene cluster. Journal of Bacteriology 155, 1381146.CrossRefGoogle ScholarPubMed
Brownlee, A. G., Caddick, M. X. & Arst, H. N. Jr. (1983). A novel phosphate-repressible phosphodiesterase in Aspergillus nidulans. Heredity 51, 529.Google Scholar
Caddick, M. X. & Arst, H. N. Jr. (1986). Structural genes for phosphatases in Aspergillus nidulans. Genetical Research 47, 8391.CrossRefGoogle ScholarPubMed
Clutterbuck, A. J. (1974). Aspergillus nidulans. In Handbook of Genetics, vol. 1 (ed. King, R. C.), pp. 447510. New York: Plenum Press.Google Scholar
Clutterbuck, A. J. (1984). Loci and linkage map of the filamentous fungus Aspergillus nidulans. (Eidam) Winter (n = 8). Genetic Maps 3, 265273.Google Scholar
Cohen, B. L. (1972). Ammonium repression of extracellular protease in Aspergillus nidulans. Journal of General Microbiology 71, 293299.CrossRefGoogle Scholar
Cove, D. J. (1966). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochimica et Biophysica Acta 113, 5156.CrossRefGoogle ScholarPubMed
Cove, D. J. (1976). Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation. Molecular and General Genetics 146, 147159.CrossRefGoogle ScholarPubMed
Dorn, G. (1965 a). Genetic analysis of the phosphatases in Aspergillus nidulans. Genetical Research 6, 1326.CrossRefGoogle ScholarPubMed
Dorn, G. (1965 b). Phosphatase mutants in Aspergillus nidulans. Science 150, 11831184.CrossRefGoogle ScholarPubMed
Dorn, G. L. (1967). A revised map of the eight linkage groups of Aspergillus nidulans. Genetics 56, 619631.CrossRefGoogle ScholarPubMed
Dorn, G. & Rivera, W. (1965). Supplementary list of located or partially located mutants in A. nidulans. Aspergillus Newsletter 6, 1315.Google Scholar
Harsanyi, Z. & Dorn, G. L. (1972). Purification and characterization of acid phosphatase V from Aspergillus nidulans. Journal of Bacteriology 110, 246255.CrossRefGoogle ScholarPubMed
Hynes, M. J. (1975). Studies on the role of the are A gene in the regulation of nitrogen catabolism in Aspergillus nidulans. Australian Journal of Biological Sciences 28, 301313.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). The use of p-fluoro-phenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.CrossRefGoogle Scholar
Polya, G. M., Brownlee, A. G. & Hynes, M. J. (1975). Enzymology and genetic regulation of a cyclic nucleotide-binding phosphodiesterase-phosphomonoesterase from Aspergillus nidulans. Journal of Bacteriology 124, 693703.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Rand, K. N. & Arst, H. N. Jr. (1977). A mutation in Aspergillus nidulans which affects the regulation of nitrite reductase and is tightly linked to its structural gene. Molecular and General Genetics 155, 6775.CrossRefGoogle ScholarPubMed
Scazzocchio, C. & Arst, H. N. Jr. (1978). The nature of an initiator constitutive mutation in Aspergillus nidulans. Nature 274, 177179.CrossRefGoogle ScholarPubMed
Tollervey, D. W. & Arst, H. N. Jr. (1981). Mutations to constitutivity and derepression are separate and separable in a regulatory gene of Aspergillus nidulans. Current Genetics 4, 6368.CrossRefGoogle Scholar
Wiame, J.-M., Grenson, M. & Arst, H. N. Jr. (1985). Nitrogen catabolite repression in yeasts and filamentous fungi. Advances in Microbial Physiology 26, 188.CrossRefGoogle ScholarPubMed