Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:27:42.007Z Has data issue: false hasContentIssue false

Parameters in gene conversion: An algebraic analysis of the hybrid DNA model at the gray locus of Sordaria fimicola.*

Published online by Cambridge University Press:  14 April 2009

Angelos Kalogeropoulos
Affiliation:
Laboratoire de Génétique, bâtiment 400, Centre d'Orsay Université de Paris-Sud. F 91405 Orsay Cedex, France
Pierre Thuriaux
Affiliation:
Laboratoire de Génétique, bâtiment 400, Centre d'Orsay Université de Paris-Sud. F 91405 Orsay Cedex, France Institut für allgemeine Mikrobiologie, Baltzerstrasse 4, CH-3012 Bern, Schweiz
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have extended previous algebraic analyses of aberrant segregation at the gray locus of Sordaria fimicola (Whitehouse, 1965; Emerson, 1966; Fincham, Hill & Reeve, 1980) to the more complex situation where aberrant segregations are detected in three factor crosses involving two flanking markers. This algebra has been applied to seven gray alleles which have been extensively characterized for their pattern of gene conversion and postmeiotic segregation by Kitani & Olive (1967). It is based on seven major types of aberrant segregation which can be distinguished in the presence of flanking markers spanning the converting site, and allows us to use up to six parameters to describe hDNA formation and mismatch repair. We present solutions which predict a spectrum of aberrant segregation fitting the experimental data at the P > 0·05 level for six of the seven alleles tested. They are consistent with the following properties of hDNA at the gray locus: (1) the single stranded DNA transferred during hDNA formation has always the same chemical polarity. (2) hDNA is mostly, if not entirely, symmetric, and its probability of formation is constant over the whole gene. (3) Disparity in aberrant segregation is mostly, if not entirely due to disparity in mismatch repair.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Arnaise, S. (1980). Le locus b1 d'Ascobolus: Spectres de segregations aberrantes et recherche de marqueurs extérieurs. Thèse, 3° cycle, Université Paris Sud, pp. 60.Google Scholar
Catcheside, D. G. (1977). In The Genetics of Recombination. pp. 172. London: Arnold.Google Scholar
Dicaprio, L. & Hastings, P. J. (1976). Gene conversion and intragenic recombination at the Sup6 locus and the surrounding region in Saccharomyces cerevisiae. Genetics 84, 697721.CrossRefGoogle Scholar
Emerson, S. (1966). Quantitative implications of the DNA-repair model of gene conversion. Genetics 53, 475485.CrossRefGoogle ScholarPubMed
Fields, W. G. & Olive, L. S. (1967). The genetics of Sordaria brevicollis. III. Gene conversion involving a series of hyaline ascospore color mutants. Genetics 57, 483493.CrossRefGoogle Scholar
Fincham, J. R. S. (1974). Negative interference and the use of flanking markers in fine structure mapping in fungi. Heredity 33, 116121.CrossRefGoogle Scholar
Fincham, J. R. S., Hill, W. G. & Reeve, E. C. R. (1980). The interpretation of gene conversion data from ordered eight-spored asci. Genetical Research 35, 179194.CrossRefGoogle Scholar
Fogel, S. & Hurst, D. D. (1967). Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 68, 401413.Google Scholar
Fogel, S., Mortimer, R. K., Lusnak, K. & Taveres, F. (1979). Meiotic gene conversion. A signal of the basic recombination event in yeast. Cold Spring Harbor Symposia of Quantitative Biology 43, 13251341.CrossRefGoogle ScholarPubMed
Gutz, H. (1971). Gene conversion: remarks on the quantitative implications of hybrid DNA models. Genetical Research 17, 4552.CrossRefGoogle ScholarPubMed
Hastings, P. J., Kalogeropoulos, A. & Rossignol, J. L. (1980). Restoration to the parental genotype of mismatches formed in recombinant DNA heteroduplex. Current Genetics 2, 169174.CrossRefGoogle Scholar
Holliday, R. (1964). A mechanism for gene conversion in fugni. Genetical Research 5, 282304.CrossRefGoogle Scholar
Holliday, R. (1974). Molecular aspects of genetic exchange and gene conversion. Genetics 78, 273287.CrossRefGoogle ScholarPubMed
Kitani, Y., Olive, L. S. & El-Ani, A. S. (1962). Genetics of Sordaria fimicola. V. Aberrant segregation at the g locus. American Journal of Botany, 49, 697706.CrossRefGoogle Scholar
Kitani, Y. & Olive, L. S. (1967). Genetics of Sordaria fimicola. VI. Gene conversion at the g locus in mutant × wild-type crosses. Genetics 57, 767782.CrossRefGoogle Scholar
Kitani, Y. & Whitehouse, H. L. K. (1974). Aberrant ascus genotypes from crosses involving mutants at the g locus in Sordaria fimicola. Genetical Research 24, 229250.CrossRefGoogle Scholar
Leblon, G. (1972). Mechanisms of gene conversion in Ascobolus immersus. II. The relationship between the genetic alterations in b1 or b2 mutants and their conversion spectra. Molecular and General Genetics 116, 322335.CrossRefGoogle ScholarPubMed
Leblon, G. (1979). Intragenic suppression at the b2 locus in Ascobolus immersus. II. Characteristics of the mutation groups A and E. Genetics 92, 10931106.CrossRefGoogle ScholarPubMed
Meselson, M. & Radding, C. (1975). A general model for genetic recombination. Proceedings of the National Academy of Sciences (U.S.A.) 72, 358361.CrossRefGoogle ScholarPubMed
Paquette, N. (1979). Polarité multiple de la recombinaison génétique dans le locus b2 d'Ascobolus immersus. Thèse, d'Etat, Université Paris XI, pp. 321.Google Scholar
Paquette, N. & Rossignol, J-L. (1978). Gene conversion spectrum of 15 mutants giving postmeiotic segregations in the b2 locus of Ascobolus immersus. Molecular and General Genetics 163, 313326.CrossRefGoogle Scholar
Potter, H. & Dressler, D. (1976). On the mechanism of genetic recombination: Electron microscopic observation of recombination intermediates. Proceedings of the National Academy of Sciences (U.S.A.) 73, 30003004.CrossRefGoogle ScholarPubMed
Sang, H. & Whitehouse, H. L. K. (1979). Genetic recombination at the buff spore colour in Sordaria brevicollis. I. Analysis of flanking marker behaviour in crosses between buff mutants and wild-type. Molecular and General Genetics 174, 327334.CrossRefGoogle Scholar
Stadler, D. R. & Towe, A. M. (1971). Evidence for a meiotic recombination in Ascobolus involving only one member of a tetrad. Genetics 68, 401413.CrossRefGoogle ScholarPubMed
Stahl, F. W. (1969). One way to think about gene conversion. Genetics, Sup. 61, 113.Google ScholarPubMed
Thompson, G., Camien, M. N. & Warner, R. C. (1976). Kinetics of branch migration in double-stranded DNA. Proceedings of the National Academy of Sciences (U.S.A.) 73, 22992303.CrossRefGoogle ScholarPubMed
Thuriaux, P., Minet, M., Munz, P., Ahmad, A., Zbaeren, D. & Leupold, U. (1980). Gene conversion in nonsense suppressors of Schizosaccharomyces pombe. II. Specific marker effects. Current Genetics 1, 8995.CrossRefGoogle ScholarPubMed
Whitehouse, H. L. K. (1963). A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature 199, 10341040.CrossRefGoogle ScholarPubMed
Whitehouse, H. L. K. (1965). Crossing-over. Science Progress 53, 285296.Google ScholarPubMed
Whitehouse, H. L. K. (1974). Genetic analysis of recombination at the g locus in Sordaria fimicola. Genetical Research 24, 251279.CrossRefGoogle Scholar
Yu-Sun, C. C., Wickramaratne, M. T. P. & Whitehouse, H. L. K. (1977). Mutagen specificity in conversion pattern in Sordaria brevicollis. Genetical Research 29, 6581.CrossRefGoogle Scholar