Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T13:23:23.232Z Has data issue: false hasContentIssue false

Non-random segregation of chromosomes in Ascobolus immersus

Published online by Cambridge University Press:  14 April 2009

S. Surzycki
Affiliation:
Department of General Genetics, Polish Academy of Sciences al. Ujazdowskie 4, Warsaw, Poland
A. Paszewski
Affiliation:
Department of General Genetics, Polish Academy of Sciences al. Ujazdowskie 4, Warsaw, Poland
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genetic consequences of non-random segregation of chromosomes are discussed. In the experimental part preferential segregation of two linkage groups in Ascobolus immersus is described. This was established in several crosses involving mutants 164, XXVI and 231 (all in the same linkage group) and mutant 726.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1964

References

REFERENCES

Hawthorne, D. C. & Mortimer, R. K. (1960). Chromosome mapping in Saccharomyces: centromere-linked genes. Genetics, 45, 10851110.CrossRefGoogle ScholarPubMed
Lissouba, P. (1961). Mise en evidence d'une unité génétique polarisée et essai d'analyse d'un cas d'interference negative. Théses Science, Paris.Google Scholar
Makarewicz, A. (1961). Preliminary results of genetic analysis in Ascobolus immersus. Ac. Soc. Bot. Polon. 30, 271283.Google Scholar
Michie, D. (1953). Affinity: a new genetic phenomenon in the house mouse. Nature, Lond., 171, 2627.Google Scholar
Michie, D. (1955). ‘Affinity.’ Proc. roy. Soc. B, 144, 241259.Google ScholarPubMed
Prakash, V. (1962). Ph.D. Thesis, Univ. Library, Cambridge.Google Scholar
Rizet, G. (1939). Sur les spores dimorphes et l'hérédité de leur caractère chez un nouvel Ascobolus hétérothallique. Ct. R. Acad. Sci., Paris, 208, 16691671.Google Scholar
Rizet, G., Lissouba, P. & Mousseau, J. (1960). Les mutations d'ascospores chez l'Ascomycete Ascobolus immersus et l'analyse de la structure fine des génés. Bull. Soc. franç. Physiol. Veget. 6, 175193.Google Scholar
Shult, E. E. & Desborough, S. (1960). The application to tetrad-analysis-data from Saccharomyces, of principles for establishing the linear order of genetic factors. Genetica, 31, 147187.Google Scholar
Shult, E. E., Desborough, S. & Lindegren, C. C. (1962). Preferential segregation in Saccharomyces. Genet. Res. 3, 196209.Google Scholar
Shult, E. E. & Lindegren, C. C. (1956). Mapping methods in tetrad analysis. I. Provisional arrangement and ordering of loci preliminary to map construction by analysis of tetrad distribution. Genetica, 28, 165176.CrossRefGoogle Scholar
Wallace, M. E. (1953). Affinity: a new genetic phenomenon in the house mouse. Nature, Lond., 171, 2728.Google Scholar
Wallace, M. E. (1958 a). Experimental evidence for a new genetic phenomenon. Phil. Trans. B, 241, 211254.Google Scholar
Wallace, M. E. (1958 b). New linkage and independence data for ruby and jerker in the mouse. Heredity, 12, 453462.Google Scholar
Wallace, M. E. (1959). An experimental test of the hypothesis of affinity. Genetica, 29, 243255.Google Scholar
Wallace, M. E. (1960 a). A possible case of affinity in tomatoes. Heredity, 14, 275283.Google Scholar
Wallace, M. E. (1960 b). Possible cases of affinity in cotton. Heredity, 14, 263274.Google Scholar
Wallace, M. E. (1961). Affinity: evidence from crossing inbred lines of mice. Heredity, 16, 123.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1957). Mapping chromosome centromeres from tetratype frequencies. J. Genet. 55, 348360.CrossRefGoogle Scholar