Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-07T19:25:14.044Z Has data issue: false hasContentIssue false

Non-random inactivation of the X-chromosome in interspecific hybrid voles

Published online by Cambridge University Press:  14 April 2009

S. M. Zakian
Affiliation:
Institute of Cytology and Genetics, Academy of Sciences of the USSR, Siberian Department, Novosibirsk, U.S.S.R.
N. A. Kulbakina
Affiliation:
Institute of Cytology and Genetics, Academy of Sciences of the USSR, Siberian Department, Novosibirsk, U.S.S.R.
M. N. Meyer
Affiliation:
Zoological Institute of Academy of Sciences of the USSR, Leningrad, U.S.S.R.
L. A. Semenova
Affiliation:
Institute of Cytology and Genetics, Academy of Sciences of the USSR, Siberian Department, Novosibirsk, U.S.S.R.
M. N. Bochkarev
Affiliation:
Institute of Cytology and Genetics, Academy of Sciences of the USSR, Siberian Department, Novosibirsk, U.S.S.R.
S. I. Radjabli
Affiliation:
Institute of Cytology and Genetics, Academy of Sciences of the USSR, Siberian Department, Novosibirsk, U.S.S.R.
O. L. Serov
Affiliation:
Institute of Cytology and Genetics, Academy of Sciences of the USSR, Siberian Department, Novosibirsk, U.S.S.R.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Expression of X-linked genes for G6PD and GALA in interspecific hybrids between Microtus arvalis, M. subarvalis and M. kirgisorum voles was studied. Quantitative predominance of the enzyme activities of M. arvalis over G6PD activity of M. subarvalis and the GALA activity of M. kirgisorum in the female hybrids was shown. The definitive patterns of these enzyme activities was found on day 6·5 of embryonic development. Non-random inactivation of X-chromosomes derived from M. subarvalis and M. kirgisorum in the interspecific hybrids with M. arvalis is supposed to be the cause of the phenomenon observed. A hypothesis is proposed that there is a connection between the presence of large heterochromatin regions in the X-chromosomes derived from M. subarvalis or M. kirgisorum and the preferential inactivation of these in female hybrids with M. arvalis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Baranov, V. S. (1983). Chromosomal control of early embryonic development of mice. 1. Experiments on embryos with autosomal monosomy. Genetica 61, 165177.CrossRefGoogle Scholar
Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse X-chromosome. Genetics 57, 331346.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1975). Control of chromosome inactivation. Annual Review of Genetics 9, 118.CrossRefGoogle ScholarPubMed
Gartler, S. M. & Andina, R. J. (1976). Mammalian X-chromosome inactivation. Advances in Human Genetics 7, 99140.CrossRefGoogle ScholarPubMed
Gartler, S. M. & Riggs, A. D. (1983). Mammalian X-chromosome inactivation. Annual Review of Genetics 17, 155190.CrossRefGoogle ScholarPubMed
Graphodatsky, A. S. & Radjabli, S. I. (1981). Peculiarities of chromosomal sets in evolution of some species of agricultural mammals. Selskokhosiastvennaya Biologia (Russia) 16, 435445.Google Scholar
Harris, H. & Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics. Amsterdam: North-Holland Publishing Company.Google Scholar
Johnston, P. G., VandeBerg, J. L. & Sharman, G. B. (1975). Inheritance of erythrocyte glucose-6-phosphate dehydrogenase in the red-necked wallaby, Macropus rufogriseus (Desmarest), consistent with paternal X inactivation. Biochemical Genetics 13, 235242.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1974). Mechanisms and evolutionary origins of variable X-chromosome activity in mammals. Proceedings of Royal Society (London) B 187, 243268.Google ScholarPubMed
Meyer, M. N., Grishchenko, T. A. & Zybina, E. V. (1981). Experimental hybridization as a method for analysing the degree of divergence of closely related species. Zoologichesky Journal (Russia) 60, 290300.Google Scholar
Rastan, S. (1982 a). Primary non-random X-inactivation caused by controlling elements in the mouse demonstrated at the cellular level. Genetical Research 40, 139147.CrossRefGoogle ScholarPubMed
Rastan, S. (1982 b). Timing the X-chromosome inactivation in postimplantation mouse embryos. Journal of Embryology and Experimental Morphology 71, 1124.Google ScholarPubMed
Rastan, S. (1983). Non-random X-chromosome inactivation in mouse X-autosome translocation embryos – location of inactivation centre. Journal of Embryology and Experimental Morphology 78, 122.Google ScholarPubMed
Richardson, B. J., Czuppon, A. B. & Sharman, G. B. (1971). Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos. Nature New Biology 230, 154155.CrossRefGoogle ScholarPubMed
Serov, O. L. & Zakijan, S. M. (1977). Allelic expression intergeneric fox hybrids (Alopex lagopus × Vulpes vulpes). II. Erythrocyte glucose-6-phosphate dehydrogenase in Arctic and silver foxes: purification and properties. Biochemical Genetics 15, 137146.CrossRefGoogle Scholar
Serov, O. L., Zakijan, S. M. & Kulichkov, V. A. (1978 a). Analysis of mechanisms regulating the expression of parental alleles at the Gpd locus in mule erythrocytes. Biochemical Genetics 16, 379386.CrossRefGoogle ScholarPubMed
Serov, O. L., Zakijan, S. M. & Kulichkov, V. A. (1978 b). Allelic expression in intergeneric fox hybrids (Alopex lagopus × Vulpes vulpes). III. Regulation of the expression of the parental alleles at the Gpd locus linked to the X chromosome. Biochemical Genetics 16, 145157.CrossRefGoogle ScholarPubMed
Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75, 304306.CrossRefGoogle ScholarPubMed
Šterba, O. (1976). Prenatal development of Microtinae rodents. Acta scientarium naturalium Academiae scientarium bohemoslovacae (Brno) 10, 141.Google Scholar
Takagi, N. & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extra-embryonic membranes of the mouse. Nature 256, 640642.CrossRefGoogle ScholarPubMed
West, J. D., Frels, W. I., Chapman, V. M. & Papaioannou, V. E. (1977). Preferential expression of the maternally derived X-chromosome in the mouse yolk sac. Cell 12, 873882.CrossRefGoogle ScholarPubMed
Zakijan, S. M., Kulbakina, N. A., Serov, O. L., Meyer, M. N. & Zharkikh, A. A. (1984). An estimation of the degree of the genetic divergence of sibling species Microtus arvalis and Microtus subarvalis (Rodentia) based on electrophoretic analysis. Biochemical Genetics 22, 10811091.CrossRefGoogle ScholarPubMed