Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T00:16:23.049Z Has data issue: false hasContentIssue false

The murine cataractogenic mutation, Cat Fraser, segregates independently of the gamma crystallin genes

Published online by Cambridge University Press:  14 April 2009

Jim L. Rupert
Affiliation:
Department of Medical Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8
Maciek Kuliszewki
Affiliation:
Department of Medical Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8
Lap-Chee Tsui
Affiliation:
Department of Medical Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8 Department of Genetics, The Hospital for Sick Children, Toronto, Ontario, CanadaM5G 1X8
Martin L. Breitman
Affiliation:
Department of Medical Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8 Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
Reynold J. M. Gold
Affiliation:
Department of Medical Genetics, University of Toronto, Toronto, Ontario, CanadaM5S 1A8
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The murine mutation, Cat Fraser (CatFr), causes dominantly inherited ocular cataracts. Lenses of adult mice bearing this mutation contain reduced amounts of all seven γ-crystallin proteins and their corresponding transcripts. Levels of other lens proteins and transcripts appear normal and no extra-ocular effects of the mutation have been observed. The selective effect of this mutation on the γ-crystallins is consistent with the possibility that the site at which it occurs is involved in the coordinated regulation of the family of genes which encodes them. We have shown that several restriction fragment length polymorphisms in the γ-crystallin genes segregate independently of the CatFr mutation. Therefore, despite its selective effect on the expression of the γ-crystallin genes, the mutation is not linked to them. This observation rules out the possibility that the mutation is in a cis-acting regulatory site.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Beebe, D. C., Feagans, D. & Jebens, H. (1980). Lentropin: a factor in vitreous humour which promotes lens fiber cell differentiation. Proceedings of the National Academy of Sciences, U.S.A. 11, 490493.CrossRefGoogle Scholar
Blundell, T., Lindley, P., Miller, L., Moss, D., Slingsby, C., Tickle, I., Turnbell, B. & Wistow, G. (1981). The molecular structure and stability of the eye lens: X-ray analysis of γ-crystallin II. Nature 289, 771777.CrossRefGoogle ScholarPubMed
Breitman, M., Lok, S., Wistow, G., Piatigorsky, J., Treton, J. A., Gold, R. & Tsui, L.-C. (1984). γ-crystallin family of the mouse lens: structural and evolutionary relationships. Proceedings of the National Academy of Sciences, U.S.A. 81, 77627766.CrossRefGoogle ScholarPubMed
Day, T. H. & Clayton, R. M. (1972). Multiple changes in lens protein composition associated with the CatFr gene in the mouse. Genetical Research 19, 241249.CrossRefGoogle Scholar
Delaye, M. & Tardieu, A. (1983). Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302, 415417.CrossRefGoogle ScholarPubMed
Fraser, C. & Schabtach, G. (1962). ‘Shrivelled’: a hereditary degeneration of the lens in the mouse. Genetical Research 3, 383387.CrossRefGoogle Scholar
Garber, A. T. & Gold, R. (1982). Comparative two-dimensional electrophoresis of water soluble proteins from bovine and murine lens. Experimental Eye Research 35, 585596.CrossRefGoogle Scholar
Garber, A. T., Stirk, L. & Gold, R. (1983). Abnormalities of crystallins in the lens of the Cat Fraser mouse. Experimental Eye Research 36, 165169.CrossRefGoogle Scholar
Garber, A. T. (1984). Studies to determine a molecular basis for Cat Fraser – a dominantly inherited murine cataract. Ph.D. thesis, University of Toronto.Google Scholar
Garber, A. T., Winkler, C., Shinohara, T., King, C. R., Inana, G., Piatigorsky, J. & Gold, R.1985). Selective loss of a family of gene transcripts in a hereditary murine cataract. Science 227, 7477.CrossRefGoogle Scholar
Hamai, Y. & Kuwabara, T. (1975). Early cytologic changes of Fraser cataract. An electron microscopic study. Investigative Ophthalmology 14, 517527.Google ScholarPubMed
Harding, J. & Dilley, K. (1976). Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Experimental Eye Research 22, 173.CrossRefGoogle Scholar
Konyukov, B. V. & Kolesova, N. A. (1975). Ultrastructural analysis of the dominant gene cataract Fr in mouse embryos. Ontogenez 7, 271276.Google Scholar
Layden, R. E. (1985). Studies on the messenger RNAs for gamma crystallins in the rat lens. Ph.D. thesis, University of Western Ontario.Google Scholar
Lok, S., Tsui, L.-C., Shinohara, T., Piatigorsky, J., Gold, R. & Breitman, M. L. (1984). Analysis of the mouse γ-crystallin gene family: assignment of multiple cDNAs to discrete genomic sequences and characterization of a representative gene. Nucleic Acids Research 12, 45174529.CrossRefGoogle ScholarPubMed
Lok, S., Breitman, M., Chapelinsky, A., Piatigorsky, J., Gold, R. J. M. & Tsui, L.-C. (1985). Lens specific promoter activity of a mouse γ-crystallin gene. Molecular and Cellular Biology 5, 22212230.Google ScholarPubMed
Maniatis, T., Frisch, E. F. & Sambrook, J. (1982). In Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Publications, New York.Google Scholar
McAvoy, J. W. (1978). Cell division, cell elongation and distribution of α-, β- and γ-crystallins in the rat lens. Journal of Embryology and Experimental Morphology 44, 149165.Google ScholarPubMed
McAvoy, J. W. (1980 a). Induction of the eye lens. Differentiation 17, 137149.CrossRefGoogle ScholarPubMed
McAvoy, J. W. (1980 b). β- and γ-crystallin synthesis in rat lens epithelium explanted with neural retina. Differentiation 17, 8591.CrossRefGoogle Scholar
Meakin, S. O., Breitman, M. & Tsui, L.-C. (1985). Structural and evolutionary relationships among five members of the human γ-crystallin gene family. Molecular and Cellular Biology 5, 14081414.Google ScholarPubMed
Murar-Orlando, M., Paterson, R., Lok, S., Tsui, L.-C. & Breitman, M. (1987). Differential regulation of γ-crystallin genes during mouse lens development. Developmental Biology 19, 260267.CrossRefGoogle Scholar
Oda, S.-I, Watanabe, T. & Kondo, K. (1980 a). A new mutation, eye lens obsolescence elo, on chromosome 1 in the mouse. Japan Journal of Genetics 55, 7175.Google Scholar
Oda, S., Watanabe, K., Fujisawa, H. & Kameyama, Y. (1980 b). Impaired development of eye lens fibers in genetic microphthalmia, eye lens obsolescence, elo, in the mouse. Experimental Eye Research 31, 673681.CrossRefGoogle ScholarPubMed
Piatigorsky, J. (1981). Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 19, 134153.CrossRefGoogle ScholarPubMed
Piatigorsky, J. (1984). Lens crystallins and their gene families. Cell 38, 620621.CrossRefGoogle ScholarPubMed
Piatigorsky, J., Chepelinsky, A. B., Hejtmancik, J. F., Burras, T., Das, G. C., Hawkins, J. W., Zelenka, P. S., King, C. R., Beebe, D. C. & Nickerson, J. M. (1984). Expression of crystallin gene families in the differentiating eye lens. In Molecular Biology of Development, pp. 331349.Google Scholar
Platanov, E. S., Yakolev, M. I. & Konyukov, B. V. (1976). Effect of mutant genes on crystallin synthesis in the developing mouse lens. 1, The gene dominant cataractFr. Ontogenez 7, 484489.Google Scholar
Quinlan, P., Oda, S., Breitman, M. L. & Tsui, L.-C. (1987). The mouse eye lens obsolescence (Elo) mutant: Studies on crystallin gene expression and linkage analysis between the mutant locus and the γ-crystallin genes. Genes and Development (in press).CrossRefGoogle Scholar
Russell, P., Smith, S., Carper, D. & Kinoshita, J. (1982). Age and cataract-related changes in the heavy molecular weight proteins and gamma crystallin composition mouse lens. Experimental Eye Research 29, 245255.CrossRefGoogle Scholar
Schoenmakers, J. G. G., den Dunnen, J. T., Moorman, R., Jongbloed, R., von Leen, R. W. & Lubsen, R. H. (1984). The crystallin gene families. CIBA Foundation Symposium 106, 208218.Google ScholarPubMed
Shinohara, T., Robinson, E., Appella, E. & Piatigorsky, J. (1982). Multiple γ-crystallins of the mouse lens: fractionation of mRNAs by cDNA cloning. Proceedings of the National Academy of Sciences, U.S.A. 79, 27832787.CrossRefGoogle ScholarPubMed
Skow, L. C. (1982). Location of a gene controlling electrophoretic variation in mouse γ-crystallins. Experimental Eye Research 34, 509516.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific DNA fragments separated by agarose gel electrophoresis. Journal of Molecular Biology 98, 503515.CrossRefGoogle Scholar
Watanabe, K., Fujisawa, H., Oda, S. and Kameyama, Y. (1980). Organ culture and immunohistochemistry of the genetically malformed lens, in Eye Lens Obsolescence, elo, of the mouse. Experimental Eye Research 31, 682689.CrossRefGoogle ScholarPubMed
Zigman, S. (1985). Selected aspects of lens differentiation. Biological Bulletin 168, 189213.CrossRefGoogle Scholar
Zwann, J. & Williams, R. (1968). Morphogenesis of the eye lens in a mouse strain with hereditary cataracts. Experimental Zoology 169, 407422.CrossRefGoogle Scholar
Zwann, J. & Williams, R. (1969). Cataracts and abnormal proliferation of the lens epithelium in mice carrying the CatFr mutation. Experimental Eye Research 8, 161167.CrossRefGoogle Scholar