Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T12:32:35.677Z Has data issue: false hasContentIssue false

Multiple changes in lens protein composition associated with the CatFr gene in the mouse

Published online by Cambridge University Press:  14 April 2009

T. H. Day
Affiliation:
Institute of Animal Genetics, Edinburgh University, and Genetics Laboratory, University of Nottingham
R. M. Clayton
Affiliation:
Institute of Animal Genetics, Edinburgh University
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ocular cataracts produced by the dominant CatFr gene in the mouse, Mus musculus, are associated with quantitative changes in the lens proteins (crystallins). The three classes of crystallin are affected differentially in homozygotes. Heterozygotes show a smaller effect. The quantitative levels of crystallin subunits are also affected and these changes are different for each subunit. The overall loss in protein is not readily explicable hi terms of a generalised leakage or a general tendency to insolubilisation. Possible mechanisms for the action of the gene are suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

References

REFERENCES

Charlton, J. M. & van Heyningen, R. (1968). An investigation into the loss of proteins of low molecular size from the lens in senile cataract. Experimental Eye Research 7, 4755.CrossRefGoogle ScholarPubMed
Clayton, R. M. & Campbell, J. C. (1968). Small eye – a mutant in the house mouse apparently affecting the synthesis of extracellular membranes. Journal of Physiology 198, 7475P.Google Scholar
Day, T. H. (1971). Variation and evolution of the structural proteins with special reference to the lens proteins. Thesis, Edinburgh University.Google Scholar
Duke-Elder, W. S. (1969). In System of Ophthalmology, vol. 2, chapter 3, p. 63. London: Henry Kimpton.Google Scholar
François, J., Rabaey, M. & Stockmans, L. (1965). Gel filtration of the soluble proteins from normal and cataractous human lenses. Experimental Eye Research 4, 312318.CrossRefGoogle ScholarPubMed
Fraser, F. C. & Schabtach, G. (1962). ‘Shrivelled’: a hereditary degeneration of the lens in the house mouse. Genetical Research 3, 383387.CrossRefGoogle Scholar
Grüneberg, H. (1952). The Genetics of the Mouse, 2nd edition. The Hague: Martinus Nijhoff.Google Scholar
Harris, H. (1970). The Principles of Human Biochemical Genetics. Amsterdam, London: North Holland Publishing Company.Google Scholar
van Heyningen, R. (1969). The Lens: Metabolism and cataract. In The Eye, vol. 1 (ed. Davson, H.), pp. 381488. New York and London: Academic Press.Google Scholar
Konyukhov, B. V. & Wachtel, A. W. (1963). Electrophoretic studies of proteins in normal lenses and cataracts of inbred and mutant mice. Experimental Eye Research 2, 325330.CrossRefGoogle ScholarPubMed
Lerman, S., Zigman, S. & Forbes, W. F. (1968). Insoluble protein fraction of the lens. Experimental Eye Research 7, 444448.CrossRefGoogle ScholarPubMed
Mach, H. (1963). Untersuchungen von Linseneiweisse und Mikroelektrophorese von Wasserlöslichem Eiweiss im Attersstar. Klinische Monatsblätter für Augenheilkunde 143, 689710.Google Scholar
McDevitt, D. S., Meza, I. & Yamada, T. (1969). Immuno-fluorescence localization of the crystalline in amphibian lens development, with special reference to the γ-crystallins. Developmental Biology 19, 581607.CrossRefGoogle Scholar
Manski, W., Behrens, M. & Martinez, C. (1968). Immunochemical studies on albuminoid. Experimental Eye Research 7, 164171.CrossRefGoogle ScholarPubMed
Markert, C. L. & Whitt, G. S. (1968). Molecular varieties of enzymes. Experientia 24, 977991.CrossRefGoogle Scholar
Moser, G. C. & Gluecksohn-Waelsch, S. (1967). Electrophoretic patterns of lens proteins from genetically caused cataract in the mouse. Experimental Eye Research 6, 297298.CrossRefGoogle ScholarPubMed
Paget, O. E. (1953). Cataracta Hereditaria Subcapsularis: ein neues, dominantes Allei bei der Hausmaus. Zeitschrift für induktive Abstammungs-u. Verebungslehre 85, 238244.Google Scholar
Papaconstantinou, J. (1967). Molecular aspects of lens cell differentiation. Science 156, 338346.CrossRefGoogle ScholarPubMed
Pirie, A. & van Heyningen, R. (1956). Biochemistry of the Eye. Oxford: Blackwell Scientific Publications.Google Scholar
Plapp, B. V. & Cole, B. D. (1967). Demonstration and partial characterization of multiple forms of bovine liver β-glucuronidase. Biochemistry 6, 36763681.CrossRefGoogle ScholarPubMed
Rao, S. S., Mehta, P. D. & Cooper, S. N. (1965). Antigenic relationship between insoluble and soluble lens proteins. Experimental Eye Research 4, 3641.CrossRefGoogle ScholarPubMed
Ruttenerg, G. (1965). The insoluble proteins of bovine crystalline lens. Experimental Eye Research 4, 1823.CrossRefGoogle Scholar
Sippel, T. O. (1967). Enzymes of carbohydrate metabolism in developing galactose cataracts of rats. Investigative Ophthalmology 6, 5963.Google ScholarPubMed
Smelser, G. K. & van Sallmann, L. (1949). Correlation of microscopic and slitlamp examinations of developing hereditary cataracts in mice. American Journal of Ophthalmology 32, 17031712.CrossRefGoogle ScholarPubMed
Stratil, A. & Spooner, R. L. (1971). Isolation and properties of individual components of cattle transferrin: the role of sialic acid. Biochemical Genetics 5, 347365.CrossRefGoogle ScholarPubMed
Tapasztó, I. (1962). Changes in the proteins of the human eye lens during the development of the cataract. Acta Ophthalmologica 40, 7784.CrossRefGoogle ScholarPubMed
Verusio, A. C. & Fraser, F. C. (1966). Identity of mutant genes ‘Shrivelled’ and Cataracta Congenita Subcapsularis in the mouse. Genetical Research 8, 377378.CrossRefGoogle Scholar
Waley, S. G. (1965). The problem of albuminoid. Experimental Eye Research 4, 293297.CrossRefGoogle ScholarPubMed
Zwaan, J. & Williams, R. M. (1968). Morphogenesis of the eye lens in a mouse strain with hereditary cataracts. Journal of Experimental Zoology 169, 407422.CrossRefGoogle Scholar
Zwaan, J. & Williams, R. M. (1969). Cataracts and abnormal proliferation of the lens epithelium in mice carrying the CatFr gene. Experimental Eye Research 8, 161167.CrossRefGoogle ScholarPubMed