Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T00:07:15.512Z Has data issue: false hasContentIssue false

Multiple amylase genes in Drosophila ananassae and related species

Published online by Cambridge University Press:  14 April 2009

J.-L. Da Lage*
Affiliation:
Laboratoire de biologie et g´nétique évolutives C.N.R.S., 91198 Gif sur Yvette Cedex, France
F. Lemeunier
Affiliation:
Laboratoire de biologie et g´nétique évolutives C.N.R.S., 91198 Gif sur Yvette Cedex, France
M.-L. Cariou
Affiliation:
Laboratoire de biologie et g´nétique évolutives C.N.R.S., 91198 Gif sur Yvette Cedex, France
J. R. David
Affiliation:
Laboratoire de biologie et g´nétique évolutives C.N.R.S., 91198 Gif sur Yvette Cedex, France
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The number and organization of amylase genes in Drosophila ananassae were investigated through classical genetic methods and in situ and filter hybridizations. At least four genes may be active in D. ananassae, organized as two independent pairs of closely linked copies on the 2L and 3L chromosomal arms. Several other species of the D. ananassae subgroup were studied and show the same chromosomal locations, suggesting an ancient duplication event. However, the number of Amy copies seems to be higher in the D. ananassae multigene family, and there is a striking intraspecific molecular differentiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Anderson, M. L. M. & Young, B. D. (1985). Quantitative filter hybridisation, pp. 73111 in Nucleic acid hybridisation, a practical approach (ed. Hames, B. D. and Higgins, S. J.). Oxford: IRL Press.Google Scholar
Bahn, E. (1967). Crossing over in the chromosomal region determining amylase isozymes inDrosophila melanogaster. Hereditas 58, 112.CrossRefGoogle Scholar
Bally-Cuif, L., Payant, V., Abukashawa, S., Benkel, B. F. & Hickey, D. A. (1990). Molecular cloning and partial sequence characterization of the duplicated amylase genes from Drosophila erecta. Genetics, Selection, Evolution 22, 5764.CrossRefGoogle Scholar
Benkel, B. F., Abukashawa, S., Boer, P. H. & Hickey, D. A. (1987). Molecular cloning of DNA complementary toDrosophila melanogaster alpha-amylase mRNA. Genome 29, 510515.CrossRefGoogle Scholar
Bock, I. R. & Wheeler, M. R. (1972). TheDrosophila melanogaster species group. University of Texas Publications 7213, 1102.Google Scholar
Boer, P. H. & Hickey, D. A. (1986). The alpha-amylase gene inDrosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Research 14, 83998411.CrossRefGoogle Scholar
Brown, C. J., Aquadro, C. F. & Anderson, W. W. (1990). DNA sequence evolution of the Amylase multigene family in Drosophila pseudoobscura. Genetics 126, 131138.CrossRefGoogle ScholarPubMed
Crerar, M. M. & Rooks, N. E. (1987). The structure and expression of amylase genes in Mammals: an overview. C.R.C. Critical reviews in biotechnology 5, issue 3, 217227.CrossRefGoogle Scholar
Da Lage, J.-L., Cariou, M.-L. & David, J. R. (1989). Geographical polymorphism of amylase in Drosophila ananassae and its relatives. Heredity 63, 6772.CrossRefGoogle ScholarPubMed
Dainou, O., Cariou, M.-L., David, J. R. & Hickey, D. (1987). Amylase gene duplication: an ancestral trait in theDrosophila melanogaster species subgroup. Heredity 59, 245251.CrossRefGoogle Scholar
Doane, W. W., Abraham, I., Kolar, M. M., Martenson, R. E. & Deibler, G. E. (1975). Purified Drosophila alphaamylase isozymes: Genetical, biochemical and molecular characterization. In Isozymes: Current Topics in Biological and Medical Research, Vol. iv. (ed. Markert, C. L.), pp. 585607. New York: Academic Press.CrossRefGoogle Scholar
Doane, W. W. & Norman, R. A. (1985). Amylase gene family in sibling Drosophila species -miranda, persimilis, pseudoobscura: Polytene chromosome sites with Amy sequence homologies. Genetics 110, 37.Google Scholar
Doane, W. W., Gemmill, R. M., Schwartz, P. E., Hawley, S. A. & Norman, R. A. (1987). Structural organization of the alpha-amylase gene locus inDrosophila melanogaster and Drosophila miranda. Isozymes: Current Topics in Biological and Medical Research 14, pp. 229266. Alan R. Liss, Inc., New York.Google Scholar
Engels, W. R., Preston, C. R., Thompson, P. & Eggleston, W. B. (1986). In situ hybridization to Drosophila salivary chromosomes with biotinylated DNA probes and alkaline phosphatase. Focus 8, 68.Google Scholar
Futch, D. G. (1966). A study of speciation in South Pacific populations of Drosophila ananassae Drosophila ananassae. University of Texas Publications 6615, 79120.Google Scholar
Gemmill, R. M., Levy, J. N. & Doane, W. W. (1985). Molecular cloning of alpha-amylase genes fromDrosophila melanogaster. I. Clone isolation by use of a mouse probe. Genetics 110, 229312.CrossRefGoogle Scholar
Gemmill, R. M., Schwartz, P. E. & Doane, W. W. (1986). Structural organization of the Amy locus in seven strain of Drosophila melanogaster. Nucleic Acid Research. 14, 53375353.CrossRefGoogle ScholarPubMed
Hawley, S. A., Norman, R. A., Brown, C. J., Doane, W. W., Anderson, W. W. & Hickey, D. A. (1990). Amylase gene expression in intraspecific and interspecific somatic transformants of Drosophila. Genome 33, 501508.CrossRefGoogle ScholarPubMed
Kikkawa, H. (1953). Biochemical genetics of Bombyx mori (Silkworm). Advances in Genetics 5, 107140.CrossRefGoogle ScholarPubMed
Kikkawa, H. (1964). An electrophoretic study on amylase inDrosophila melanogaster. Japanese Journal of Genetics 39, 401411.Google Scholar
Klarenberg, A. J., Visser, A. J. S., Willemse, M. F. M. & Scharloo, W. (1986). Genetic localization of regulatory genes and elements for tissue-specific expression of alphaamylase inDrosophila melanogaster. Genetics 114, 11311145.CrossRefGoogle Scholar
Langley, C. H., Shrimpton, A. E., Yamazaki, T., Miyashita, N., Matsuo, Y., and Aquadro, C. F. (1988). Naturally occurring variation in the restriction map of the Amy region of Drosophila melanogaster. Genetics 119, 619629.CrossRefGoogle ScholarPubMed
Laulier, M. (1988). Genetique et systematique evolutives du complexe d'especes Sphaeroma hookeri Leach, sphaeroma levii Argano et Sphaeroma rugicauda Leach (Crustaces, Isopodes Flabelliferes). 1. Genetique formelle de onze locus enzymatiques. Genetics, Selection, Evolution 20, 6374.CrossRefGoogle Scholar
Levy, J. N., Gemmill, R. M. & Doane, W. W. (1985). Molecular cloning of alpha-amylase genes fromDrosophila melanogaster. II. Clone organization and verification. Genetics 110, 313324.CrossRefGoogle Scholar
Maniatis, T., Fritsch, E. F. & Sembrook, J. (1982). Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory.Google Scholar
Moriwaki, D. & Ito, S. (1969). Studies on puffing in the salivary gland chromosomes of Drosophila ananassae. Japanese Journal of Genetics 44, 129138.Google Scholar
Ogita, Z. (1968). Genetic control of isozymes. Annals of the New York Academy of Science 151, 243262.CrossRefGoogle ScholarPubMed
Ohno, S. (1970). Evolution by gene duplication. Berlin, Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
Ohta, T. (1983). Some models of gene conversion for treating the evolution of multigene families. Genetics 106, 517528.CrossRefGoogle Scholar
Oxford, G. S. (1986). Multiple amylase loci in Asellus (Crustacea: Isopoda): Genetics and linkage. Heredity 56, 105110.CrossRefGoogle Scholar
Payant, V., Abukashawa, S., Sasseville, M., Benkel, B., Hickey, D. & David, J. (1988). Evolutionary conservation of the chromosomal configuration and conservation of Amylase genes among eight species of theDrosophila melanogaster species subgroup. Molecular Biology and Evolution 5, 560567.Google Scholar
Pope, G. J., Anderson, M. D. & Bremner, T. A. (1986). Constancy and divergence of amylase loci in four species of Tribolium (Coleoptera, Tenebrionidae). Comparative Biochemistry and Physiology, 83B, 331333.Google ScholarPubMed
Singh, B. N. (1985). Drosophila ananassae-a. Genetically unique species. The Nucleus 28, 169176.Google Scholar
Stephan, W. & Langley, C. H. (1989). Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics 121, 8999.CrossRefGoogle ScholarPubMed
Sturtevant, A. H. & Novitski, E. (1941). The homologies of the chromosomes elements in the genus Drosophila. Genetics 26, 517541.CrossRefGoogle ScholarPubMed