Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:40:46.888Z Has data issue: false hasContentIssue false

Mitotic recombination in the paba 1 cistron of Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

A. Putrament
Affiliation:
Department of Genetics, The University, Glasgow and Department of Genetics, The University of Warsaw, Poland*
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The results of the analysis of 393 mitotic recombinants within the paba1 region of Aspergillus nidulans can be summarized as follows:

1. Reciprocal, non-reciprocal and probably inexactly reciprocal exchanges occur in intra-cistron mitotic recombination.

2. Negative interference observed in intra-cistron mitotic recombination in the paba1 region of Aspergillus nidulans is more intense than that observed in meiotic recombination in the same cistron.

3. In intragenic mitotic recombination multiple exchanges can involve three or even four chromatids within one effective pairing segment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1964

References

REFERENCES

Case, M. E. & Giles, N. H. (1958 a). Recombination mechanisms at the pan-2 locus in Neurospora crassa. Cold Spr. Harb. Symp. quant. Biol. 23, 119135.CrossRefGoogle ScholarPubMed
Case, M. E. & Giles, N. H. (1958 b). Evidence from tetrad analysis for both normal and abnormal recombination between allelic mutants in Neurospora crassa. Proc. nat. Acad. Sci., Wash., 44, 378390.CrossRefGoogle Scholar
Giles, N. H., de Serres, F. J., & Barbour, E. (1957). Studies with purple adenine mutants of Neurospora crassa. II. Tetrad analysis from a cross of an ad-3A mutant with an ad-3B mutant. Genetics, 42, 608617.CrossRefGoogle Scholar
Käfer, E. (1958). An 8-chromosome map of Aspergillus nidulans. Advanc. Genet. 9, 105145.CrossRefGoogle ScholarPubMed
Kitani, Y., Olive, L. S. & El-Ani, A. S. (1961). Transreplication and crossing-over in Sordaria fimicola. Science, 134, 668669.CrossRefGoogle ScholarPubMed
Lhoas, P. (1961). Mitotic haploidisation by treatment of Aspergillus niger diploids with para-fluorophenylalanine. Nature, Lond., 190, 744.CrossRefGoogle Scholar
Lindegren, C. C. (1953). Gene conversion in Saccharomyces. J. Genet. 51, 625.CrossRefGoogle Scholar
Lissouba, P. (1960). Mise en évidence d'une unité génétique polarisée et essai d'analyse d'vine cas d'interférence négative. Ann. Sci. not. Bot. 12 ser., 641.Google Scholar
Lissouba, P., Mousseau, J., Rizet, G. & Rossignol, J. L. (1962). Fine structure of genes in the Ascomycete Ascobolus immersus. Advanc. Genet. 11, 373378.Google Scholar
Lissouba, P. & Rizet, G. (1960). Sur l'existence d'une unité géntique polarisée ne subissant que des échanges non-réciproques. C. R. Acad. Sci., Paris, 250, 34083410.Google Scholar
Martin-Smith, C. A. (1961). A genetic investigation of the AD9 cistron of Aspergillns nidulans. Ph.D. Thesis, University of Glasgow.Google Scholar
Mitchell, H. K. (1957). Crossing over and gene conversion in Neurospora. The Chemical Basis of Heredity. Pp. 94113. Baltimore: Johns Hopkins Press.Google Scholar
Mitchell, M. B. (1955 a). Aberrant recombination of pyridoxin mutants of Neurospora. Proc. nat. Acad. Sci., Wash., 41, 215220.CrossRefGoogle ScholarPubMed
Mitchell, M. B. (1955 b). Further evidence of aberrant recombination in Neurospora. Proc. nat. Acad. Sci., Wash., 41, 935937.CrossRefGoogle ScholarPubMed
Morpurgo, G. (1961). Somatic segregation induced by p-fluoro-phenylalanine (PFP). Aspergillus News Letter, No. 2, 10.Google Scholar
Olive, L. S. (1959). Aberrant tetrads in Sordaria fimicola. Proc. nat. Acad. Sci., Wash., 45, 727.CrossRefGoogle ScholarPubMed
Pontecorvo, G. & Käfer, E. (1958). Genetic analysis based on mitotic recombination. Advanc. Genet. 9, 71104.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141238.CrossRefGoogle ScholarPubMed
Pritchard, R. H. (1955). The linear arrangement of a series of alleles in Aspergillus nidulans. Heredity, 9, 343371.CrossRefGoogle Scholar
Pritchard, R. H. (1960 a). Localized negative interference and its bearing on models of gene recombination. Genet. Res. 1, 124.CrossRefGoogle Scholar
Rizet, G., Lissouba, P. & Mousseau, J. (1960). Les mutations d'ascospores chez l'ascomycete Ascobolus irnmersus et l'analyse de la structure fine des genes. Bull. Soc. Fr. Physiol. Veget. 6, 175.Google Scholar
Roman, H. (1956). Studies of gene mutation in Saccharomyces. Cold Spr. Harb. Symp. quant. Biol. 21, 175185.CrossRefGoogle ScholarPubMed
Roman, H. (1958). Sur les recombinaisons non réciproques chez Saccharomyces cerevisiae et sur les problèmes posés par ces phénomènes. Ann. Genet. 1, 11.Google Scholar
Roper, J. A. & Pritchard, R. H. (1955). The recovery of the reciprocal products of mitotic crossing over. Nature, Lond., 175, 639.CrossRefGoogle Scholar
Siddiqi, O. H. (1962). The fine structure of the paba1 region of Aspergillus nidulans. Genet. Res. 3, 6989.CrossRefGoogle Scholar
Siddiqi, O. H. & Putrament, A. (1963). Polarized negative interference in the paba1 region of Aspergillus nidulans. Genet. Res. 4, 1220.CrossRefGoogle Scholar
Stadler, D. R. (1959). Gene conversion of cysteine mutants in Neurospora. Genetics, 44, 647655.CrossRefGoogle ScholarPubMed
Stadler, D. R. & Towe, A. M. (1963). Recombination of allelic cysteine mutants in Neurospora. Genetics, 48, 13231344.CrossRefGoogle ScholarPubMed
Strickland, W. N. (1958). Abnormal tetrads in Aspergillus nidulans. Proc. roy. Soc. B, 148, 533542.Google ScholarPubMed
Strickland, W. N. (1961). Tetrad analysis of short chromosome regions of Neurospora crassa. Genetics, 46, 11251141.CrossRefGoogle ScholarPubMed
Suyama, Y., Munkres, K. D. & Woodward, V. W. (1959). Genetic analysis of the pyr3 locus of Neurospora crassa: the bearing of recombination and gene conversion upon interallelic linearity. Genetica, 30, 293311.CrossRefGoogle Scholar