Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T13:54:34.492Z Has data issue: false hasContentIssue false

A method for detecting effect of beneficial mutations in natural populations of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

A. Koga*
Affiliation:
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan
S. Kusakabe
Affiliation:
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan
F. Tajima
Affiliation:
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan
T. Takano
Affiliation:
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan
K. Harada
Affiliation:
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan
T. Mukai
Affiliation:
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An experimental method is proposed for detecting the effects of positive natural selection on DNA polymorphisms. Since beneficial mutations are expected to increase in frequency faster than neutral mutations, variants which have reached high frequencies in a relatively short period could be linked to some beneficial mutation. D. melanogaster has a cosmopolitan polymorphic inversion -In(2L)t - whose age in some local populations has been estimated. Setting the age of In(2L)t as the upper limit for the age of variants, we searched for variants whose frequencies were possibly influenced by positive natural selection. We detected a single candidate whose frequency and distribution met the requirements imposed by our method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Aguadé, M. (1988). Restriction map variation of the Adh locus of Drosophila melanogaster in inverted and non-inverted chromosaomes. Genetics 119, 135140.CrossRefGoogle Scholar
Aquadro, C. F., Desse, S. F., Bland, M. M., Langley, C. H. & Laurie-Ahlberg, C. C. (1986). Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114, 11651190.CrossRefGoogle ScholarPubMed
Bingham, P. M., Levis, R. & Rubin, G. M. (1981). Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell 25, 693704.CrossRefGoogle ScholarPubMed
Birley, A. J. (1984). Restriction endonuclease map variation and gene diversity in the Adh region in a population of Drosophila melanogaster. Heredity 52, 103112.CrossRefGoogle Scholar
Clayton, G. & Robertson, A. (1955). Mutation and quantitative variation. The American Naturalist 186, 151158.CrossRefGoogle Scholar
Chia, W., Karp, R., McGill, S. & Ashburner, M. (1985). Molecular analysis of the Adh region of the genome of Drosophila melanogaster. Journal of Molecular Biology 186, 689704.CrossRefGoogle ScholarPubMed
Cross, S. R. H. & Birley, A. J. (1986). Restriction endonuclease map variation in the Adh region in populations of Drosophila melanogaster. Biochemical Genetics 24, 415433.CrossRefGoogle ScholarPubMed
Durrant, A. & Mather, K. (1954). Heritable variation in a long inbred line of Drosophila. Genetica 27, 97199.CrossRefGoogle Scholar
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Harada, K., Koga, A., Kusakabe, S. & Mukai, T. (1988). A new family of mobile dispersed middle repetitive elements in Drosophila melanogaster. Proceedings of the Japan Academy 64, 193196.CrossRefGoogle Scholar
Hattori, M. & Sakaki, Y. (1986). Dideoxy sequencing method using denatured plasmid templates. Analytical Biochemistry 153, 232238.CrossRefGoogle Scholar
Hughes, A. L. & Nei, M. (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167170.CrossRefGoogle Scholar
Kettlewell, H. B. D. (1965). Insect survival and selection for pattern. Science 148, 12901296.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determined in Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A. 80, 16551659.CrossRefGoogle ScholarPubMed
Kimura, M. (1983 a). The Neutral Theory of Molecular Evolution. Cambridge University Press. Cambridge, U.K.CrossRefGoogle Scholar
Kimura, M. (1983 b). Rare variant alleles in the light of the neutral theory. Molecular Biology and Evolution 1, 8493.Google ScholarPubMed
Kreitman, M. (1983). Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304, 412417.CrossRefGoogle ScholarPubMed
Kreitman, M. & Aguadé, M. (1986). Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proceedings of the National Academy of Sciences, U.S.A. 83, 35623566.CrossRefGoogle ScholarPubMed
Langley, C. H., Montgomery, E. & Quattlebaum, W. F. (1982). Restriction map variation in the Adh region of Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 79, 56315635.CrossRefGoogle Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
Mettler, L. E., Voelker, R. A. & Mukai, T. (1977). Inversion clines in populations of Drosophila melanogaster. Genetics 87, 169176.CrossRefGoogle ScholarPubMed
Mukai, T., Chigusa, S. I., Mettler, L. E. & Crow, J. F. (1972). Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72, 335355.CrossRefGoogle ScholarPubMed
Mukai, T. & Cockerham, C. C. (1977). Spontaneous mutation rates at enzyme loci in Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 74, 25142517.CrossRefGoogle ScholarPubMed
Mukai, T., Harada, K., Kusakabe, S. & Yamazaki, T. (1990). Estimation of spontaneous mutation rates at enzyme loci in Drosophila melanogaster. Proceedings of the Japan Academy 66, 2932.CrossRefGoogle Scholar
Mukai, T., Tachida, H. & Ichinose, M. (1980). Selection for viability at loci controlling protein polymorphisms in Drosophila melanogaster is very weak at most. Proceedings of the National Academy of Sciences, U.S.A. 77, 48574860.CrossRefGoogle ScholarPubMed
Mukai, T. & Voelker, R. A. (1977). The genetic structure of natural populations of Drosophila melanogaster. XIII. Further studies on linkage disequilibrium. Genetics 86, 175185.CrossRefGoogle ScholarPubMed
Mukai, T. & Yamaguchi, O. (1974). The genetic structure of natural populations of Drosophila melanogaster. XI. Genetic variability in a local population. Genetics 76, 339366.CrossRefGoogle Scholar
Mukai, T., Watanabe, T. K. & Yamaguchi, O. (1974). The genetic structure of natural populations of Drosophila melanogaster. XII. Linkage disequilibrium in a large local population. Genetics 77, 771793.CrossRefGoogle Scholar
Nei, M., Kojima, K. & Schaffer, H. E. (1967). Frequency changes of new inversions in populations under mutation-selection equilibria. Genetics 57, 741750.CrossRefGoogle ScholarPubMed
Nei, M. & Li, W.-H. (1980). Non-random association between electromorphs and inversion chromosomes in finite populations. Genetical Research 35, 6583.CrossRefGoogle ScholarPubMed
Nei, M. & Tajima, F. (1981). DNA polymorphism detected by restriction endonucleases. Genetics 97, 145163.CrossRefGoogle ScholarPubMed
Pardue, M. L. & Gall, J. G. (1975). Nucleic acid hybridization to the DNA of cytological preparations. Methods in Cell Biology 10, 116.CrossRefGoogle Scholar
Perutz, M. F. (1983). Species adaptation in a protein molecule. Molecular Biology and Evolution 1, 128.Google ScholarPubMed
Rigby, P. W. J., Dieckmann, M. & Rhodes, C. (1977). Labelling deoxyribonucleic acid to high specific activity in vivo by nick translation with DNA polymerase I. Journal of Molecular Biology 113, 237251.CrossRefGoogle Scholar
Saigo, K., Millstein, L. & Thomas, C. A. Jr. (1981). The organization of Drosophila melanogaster histone genes. Cold Spring Harbor Symposium, Quantitative Biology 45, 815827.CrossRefGoogle ScholarPubMed
Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74, 54635467.CrossRefGoogle ScholarPubMed
Shaw, C. R. (1965). Electrophoretic variation in enzymes. Science 149, 936943.CrossRefGoogle ScholarPubMed
Slatkin, M. (1987). The average number of sites separating DNA sequences drawn from a subdivided population. Theoretical Population Biology 32, 4249.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Strobeck, C. (1987). Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117, 149153.CrossRefGoogle Scholar
Tajima, F. (1990). Relationship between migration and DNA polymorphism in a local population. Genetics 126, 231234.CrossRefGoogle Scholar
Yamaguchi, O., Ichinose, M., Matsuda, M. & Mukai, T. (1980). Linkage disequilibrium in isolated populations of Drosophila melanogaster. Genetics 96, 507552.CrossRefGoogle ScholarPubMed
Yokoyama, S., Isenberg, K. E. & Wright, A. F. (1989). Adaptive evolution of G-protein coupled receptor genes. Molecular Biology and Evolution 6, 342353.Google ScholarPubMed
Weiner, R. & Crow, J. F. (1951). The resistance of DDT-resistant Drosophila to other insecticides. Science 113, 403404.CrossRefGoogle ScholarPubMed