Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:30:52.849Z Has data issue: false hasContentIssue false

Mapping studies of the distal imprinting region of mouse Chromosome 2

Published online by Cambridge University Press:  14 April 2009

J. Peters
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxon OX11 0RB, UK
C. V. Beechey
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxon OX11 0RB, UK
S. T. Ball
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxon OX11 0RB, UK
E. P. Evans
Affiliation:
MRC Radiobiology Unit, Chilton, Didcot, Oxon OX11 0RB, UK
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The known limits of the distal imprinting region of mouse Chromosome (Chr) 2 are defined by the breakpoints of the translocations T(2;8)2Wa, (T2Wa), and T(2;16)28H, (T28H), in distal H3, and proximal H4 respectively. We have shown that T2Wa and T(2;4)1Go, (T1Go), which has a breakpoint in central H3 map close to a, non-agouti. Ada, adenosine deaminase, lies very near the proximal boundary and Ra, ragged, maps very close to the distal boundary, and is less than 0-2 cM from wasted, wst. From the current data Ada can be taken as the proximal, and Ra as the distal gene marker of the imprinting region on the linkage map. From consensus maps twenty three other markers, including fourteen genes, lie between Ada and Ra, some of which may be useful in investigations of imprinting. Of the markers included in the study reported here, four, Ada, ls, lethal spotting, Ra and wst lie or probably lie within the region but none display any evidence of imprinting. We suggest that recombination frequency is elevated in distal Chr 2, because in none of the crosses could the most closely linked marker be ordered in relation to the translocation breakpoint due to the high frequency of double crossovers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Abbott, C. M., Skidmore, C. J., Searle, A. G. & Peters, J. (1986). Deficiency of adenosine deaminase in the wasted mouse. Proceedings of the National Academy of Sciences, U.S.A. 83, 693695.CrossRefGoogle ScholarPubMed
Abbott, C. M., Evans, E. P., Burtenshaw, M., Ball, S. T., Skidmore, C. J., Jones, J. & Peters, J. (1991). Adenosine deaminase, Ada, is in mouse Chromosome 2H3, and is not allelic with wasted, wst. Biochemical Genetics 29, 537544.CrossRefGoogle Scholar
Beechey, C. V., Evans, E. P., Peters, J. & Ball, S. T. (1992). Mapping studies of distal chromosome 2 including the imprinting region. Mouse Genome 90, 423424.Google Scholar
Beechey, C. V. (1994). Maps of chromosome anomalies in the mouse. Mouse Genome 92, 86107.Google Scholar
Beechey, C. V. & Cattanach, B. M. (1994). Genetic Imprinting Map. Mouse Genome 92, 108110.Google Scholar
Beerman, F., Bartels, I., Francke, U. & Hansmann, I.(1987). Chromosome segregation at meiosis I in female T(2;4)lGo/ + mice: No evidence for a decreased cross over frequency with maternal age. Chromosoma 95, 17.CrossRefGoogle Scholar
Boer, P. & van de Gijsen, M. (1974). The location of the positions of the breakpoints involved in the T26H and T70H mouse translocations with the aid of Giemsabanding. Canadian Journal of Genetics and Cytology 16, 783788.CrossRefGoogle ScholarPubMed
Carter, T. C., Lyon, M. F. & Phillips, R. J. S. (1955). Genetagged chromosome translocations in eleven stocks of mice. Journal of Genetics 53, 154166.CrossRefGoogle Scholar
Cattanach, B. M. (1986). Parental origin effects in mice. Journal of Embryology and Experimental Morphology(supplement) 97, 137150.Google ScholarPubMed
Cattanach, B. M. & Kirk, M. (1985). Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496498.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Beechey, C. V. (1990). Autosomal and X-chromosome imprinting. Development 1990 Supplement, 6372.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Beechey, C. V., Evans, E. P. & Burtenshaw, M. (1991). Further localisation of the distal chromosome 2 imprinting region. Mouse Genome 89,255–256.Google Scholar
Cattanach, B. M., Evans, E. P., Burtenshaw, M. & Beechey, C. V. (1992). Further delimitation of the distal chromosome 2 imprinting region. Mouse Genome 90, 82.Google Scholar
Cattanach, B. M. & Jones, J. (1994). Genetic imprinting in the mouse: implications for gene regulation. Journal of Inherited Metabolic Disease (in the press).Google ScholarPubMed
Davisson, M. T., Roderick, T. H. & Doolittle, D. P. (1989). Recombination percentages and chromosomal assignments. In Genetic Variants and Strains of the Laboratory Mouse (ed. Lyon, M. F., and Searle, A. G.), pp. 432505. Oxford: Oxford University Press.Google Scholar
Evans, E. P. (1987). Karyotyping aand sexing of gametes, embryos and fetuses and in situ hybridization to chromosomes. In Mammalian Development, a practical approach(ed. Monk, M.), 93114. Oxford and Washington D.C.: IRL Press.Google Scholar
Gorlov, I. P., Agulnik, A. I. & Agulnik, S. I. (1987). Termination of the position of genes on house mouse chromosomes by comparison of the genetic map and the chiasma distribution profile. Genetika 23, 6370.Google Scholar
Hillyard, A. L., Doolittle, D. P., Davisson, M. T. & Roderick, T. H. (1993). Locus map of mouse. Mouse Genome 91, 1539.Google Scholar
Tissier, P. R. Le, Guenet, J.-L., Skidmore, C. J. & Peters, J.(1993). Mapping studies on distal chromosome 2. Mouse Genome 91, 879881.Google Scholar
Lyon, M. F. (1976). Distribution of crossing-over in mouse chromosomes. Genetical Research 28, 291299.CrossRefGoogle ScholarPubMed
Lyon, M. F. & Kirby, M. C. (1993). Mouse Chromosome Atlas. Mouse Genome 91, 4080.Google Scholar
Peters, J. & Ball, S. T. (1989). Parental origin of Ada and itsexpression. Mouse News Letter 84, 84.Google Scholar
Phillips, R. J. S. (1966). Lethal spotting, Is, is in linkage group V. Mouse News Letter 34, 27.Google Scholar
Povey, S., Smith, M., Haines, J., Kwiatkowski, D., Fountain, J., Bale, A., Abbott, C., Jackson, I., Lawrie, M. & Hulten, M. (1992). Report of the first international workshop on chromosome 9. Annals of Human Genetics 56, 167221.CrossRefGoogle ScholarPubMed
Searle, A. G. (1989). Chromosome variants. In Genetic Variants and Strains of the Laboratory Mouse (ed Lyon, M. F., and Searle, A. G.), pp. 582619. Oxford: Oxford University Press.Google Scholar
Searle, A. G. & Beechey, C. V. (1970). Mouse News Letter 43, 29.Google Scholar
Siracusa, L. D., Buchberg, A. M., Copeland, N. G. & Jenkins, N. A. (1989). Recombinant inbred strain and interspecific backcross analysis of molecular markers flanking the murine agouti coat colour locus. Genetics 122, 669679.CrossRefGoogle Scholar
Siracusa, L. D., Silan, C. M., Justice, M. J., Mercer, J. A., Bauskin, A. R., Ben-Neriah, Y., Duboule, D., Hastie, N. D., Copeland, N. G. & Jenkins, N. A. (1990). A molecular genetic linkage map of mouse chromosome 2. Genomics 6, 491504.CrossRefGoogle ScholarPubMed
Siracusa, L. D. & Abbott, C. M. (1993). Mouse Chromosome 2. Mammalian Genome 4, S31–S46.CrossRefGoogle ScholarPubMed
Sweet, H. O. (1984). Wasted linkage. Mouse News Letter 71, 31.Google Scholar
Washburn, L. L. & Eicher, E. M. (1977). Mouse News Letter 57, 23.Google Scholar