Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:23:41.012Z Has data issue: false hasContentIssue false

Macrogeographic genetic variation in a human commensal: Aedes aegypti, the yellow fever mosquito

Published online by Cambridge University Press:  14 April 2009

Graham P. Wallis
Affiliation:
Department of Biology, Yale University, P.O. Box 6666, New Haven CT, 06511
Walter J. Tabachnick
Affiliation:
Department of Biology, Yale University, P.O. Box 6666, New Haven CT, 06511
Jeffrey R. Powell
Affiliation:
Department of Biology, Yale University, P.O. Box 6666, New Haven CT, 06511
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genetic variation at 11 enzyme loci in Aedes aegypti populations collected from 63 localities around the world is presented. A UPGMA tree based on genetic distance values clusters populations of sylvan A. aegypti formosus from West Africa and East Africa together, along with Asian and south-eastern U.S. populations. Domestic A. aegypti aegypti from East Africa and all other New World populations form the other major cluster. Multivariate discriminant analysis allows recognition of seven major global ‘genetic–geographic’ groups, which are consistent with the genetic distance data. Populations from the south-eastern U.S. are clearly genetically distinct from other U.S. and Mexican populations. This distinct gene pool may be indicative of reinfestation of areas where A. aegypti appears to have been absent in the recent past. Other evolutionary and epidemiological implications of the genetic population structure of Aedes aegypti are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Aitken, T. H. G., Downs, W. G. & Shope, R. E. (1977). Aedes aegypti strain fitness for yellow fever virus transmission. American Journal of Tropical Medicine and Hygiene 26, 985989.CrossRefGoogle ScholarPubMed
Beaty, B. & Aitken, T. H. G. (1979). In vitro transmission of yellow fever virus by geographic strains of Aedes aegypti. Mosquito News 39, 232238.Google Scholar
Berry, R. J. (1977). Inheritance and Natural History. London: Collins.Google Scholar
Craig, G. B. & Hickey, W. A. (1966). Genetic variability in Aedes aegypti (Diptera: Culicidae). IV. Mutation load in some African populations. Annals of the Entomological Society of America 59, 12281234.CrossRefGoogle Scholar
Dixon, W. J. (ed.). (1981). BMDP Statistical Software. London: University of California Press.Google Scholar
Dudley, S. F. (1934). Can yellow fever spread into Asia? Journal of Tropical Medicine and Hygiene 37, 273278.Google Scholar
Endler, J. A. (1973). Gene flow and population differentiation. Science 179, 243250.CrossRefGoogle ScholarPubMed
Kimura, M. & Maruyama, T. (1971). Pattern of a neutral polymorphism in a geographically structured population. Genetical Research 18, 125131.CrossRefGoogle Scholar
Gubler, D. J., Novak, R. & Mitchell, C. J. (1982). Arthropod vector competence –epidemiological, genetic and biological considerations. In Recent Developments in the Genetics of Insect Disease Vectors, A Symposium Proceedings (ed. Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. and Narang, S.), pp. 343378. Champaign, IL.: Stipes.Google Scholar
Hunt, W. G. & Selander, R. K. (1973). Biochemical genetics of hybridization in European house-mice. Heredity 31, 1133.CrossRefGoogle ScholarPubMed
Leahy, M. G., VandeHey, R. C. & Booth, K. S. (1978). Differential response to oviposition site by feral and domestic populations of Aedes aegypti (L.) (Diptera:Culicidae). Bulletin of Entomological Research 68, 455463.CrossRefGoogle Scholar
Machado-Allison, C. E. & Craig, G. B.(1972). Geographic variation in resistance todesiccation in Aedes aegypti and A. atropalpus (Diptera, Culicidae). Annals of the Entomological Society of America 65, 542547.CrossRefGoogle Scholar
Mattingly, P. F. (1957). Genetical aspects of the Aedes aegypti problem. I. Taxonomy and bionomics. Annals of Tropical Medicine and Parasitology 51, 392408.CrossRefGoogle Scholar
McClelland, G. A. H. (1974). A worldwide survey of variation in scale pattern of the abdominal tergum of Aedes aegypti (L.) (Diptera: Culicidae). Transactions of the Royal Entomological Society of London 126, 239359.CrossRefGoogle Scholar
Munstermann, L. E. & Craig, G. B. (1979). Genetics of Aedes aegypti. Updating the linkage map. Journal of Heredity 70, 291296.CrossRefGoogle Scholar
Nei, M. (1972). Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Pan-American Health Organization (1979). Dengue in the Caribbean, 1977. PAHO Scientific Publication, no. 375. Washington, D. C.Google Scholar
Petersen, J. L. (1977). Behavioral differences in two subspecies of Aedes aegypti (L.) (Diptera: Culicidae) in East Africa. Ph.D. Thesis, University of Notre Dame.Google Scholar
Powell, J. R., Tabachnick, W. J. & Wallis, G. P. (1982). Aedes aegypti as a model of the usefulness of population genetics in studies of insect disease vectors. In Recent Developments in the Genetics of Insect Disease Vectors, A Symposium Procedings (ed. Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. and Narang, S.), pp. 396412. Champaign, IL: Stipes.Google Scholar
Powell, J. R., Tabachnick, W. J. & Arnold, J. (1980). Genetics and the origin of a vector population: Aedes aegypti, a case study. Science 208, 13851387.CrossRefGoogle ScholarPubMed
Selander, R. K., Hunt, W. G. & Yang, S. Y. (1969). Protein polymorphism and genetic heterozygosity in two European subspecies of the house-mouse. Evolution 23, 379390.CrossRefGoogle Scholar
Selander, R. K. & Yang, S. Y. (1969). Protein polymorphism and genetic heterozygosity in a wild population of the house-mouse (Mus musculus). Genetics 63, 653667.CrossRefGoogle Scholar
Singh, R. S., Hickey, D. A. & David, J. (1982). Genetic differentiation between geographically distant populations of Drosophila melanogaster. Genetics 101, 235256.CrossRefGoogle ScholarPubMed
Smith, C. E. G. (1956). The history of dengue in tropical Asia and its probable relationship to the mosquito Aedes aegypti. Journal of Tropical Medicine and hygiene 59, 311.Google Scholar
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: W. H. Freeman.Google Scholar
Strode, G. K. (1951). Yellow Fever. New York: McGraw-Hill.Google Scholar
Tabachnick, W. J. (1982). Geographic and temporal patterns of genetic variation of Aedes aegypti in New Orleans. American Journal of Tropical Medicine and Hygiene 31, 849853.CrossRefGoogle ScholarPubMed
Tabachnick, W. J., Munstermann, L. E. & Powell, J. R. (1979). Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evolution 33, 287295.CrossRefGoogle ScholarPubMed
Tabachnick, W. J. & Powell, J. R. (1978). Genetic stucture of the East African domestic populations of Aedes aegypti. Nature 272, 535537.CrossRefGoogle Scholar
Tabachnick, W. J. & Powell, J. R. (1979). A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genetical Research 34, 215229.CrossRefGoogle ScholarPubMed
Tabachnick, W. J., Aitken, T. H. G., Beaty, B. J., Miller, B. R., Powell, J. R. & Wallis, G. P. (1982). Genetic approaches to the study of vector competency in Aedes aegypti. In Recent Developments in the Genetics of Insect Disease Vectors, A Symposium Proceedings (ed. Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. and Narang, S.), pp. 413432. Champaign, IL: Stipes.Google Scholar
Trapido, H. & Carmichael, G. T. (1974). Reappearance of Aedes aegypti in New Orleans, Louisiana. Dengue Newsletter for the Americas 3 (3), 7.Google Scholar
Trpis, M. & Hausermann, W. (1975). Demonstration of differential domesticity of Aedes aegypti (L.) (Diptera: Culicidae) in Africa by mark-release-recapture. Bulletin of Entomological Research 65, 199208.CrossRefGoogle Scholar
Trpis, M. & Hausermann, W. (1978). Genetics of house entering behavior in East African populations of Aedes aegypti (L.) (Diptera: Culicidae) and its relevance to speciation. Bulletin of Entomological Research 68, 521532.CrossRefGoogle Scholar
VandeHey, R. C., Leahy, M. G. & Booth, K. S. (1978). Analysis of colour variations in feral, peridomestic and domestic populations of Aedes aegypti (L.) (Diptera: Culicidae). Bulletin of Entomological Research 68, 443453.CrossRefGoogle Scholar
Wallis, G. P. & Tabachnick, W. J. (1982). Linkage of an isocitrate dehydrogenase locus with sex and two lethals in Aedes aegypti. Journal of Heredity 73, 291294.CrossRefGoogle ScholarPubMed