Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T08:26:07.187Z Has data issue: false hasContentIssue false

Location of prophage H90 on the chromosome of Pseudomonas aeruginosa strain PAO

Published online by Cambridge University Press:  14 April 2009

K. E. Carey
Affiliation:
Department of Genetics, Monash University, Clayton, Vic, 3168, Australia
V. Krishnapillai
Affiliation:
Department of Genetics, Monash University, Clayton, Vic, 3168, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Prophage H90 has been found to undergo a phenomenon similar to zygotic induction, during conjugal transfer from a lysogenic donor to a non-lysogenic recipient.

It has not been possible to demonstrate that the level of infectious centres increases concomitantly with transfer of the prophage. However, the genetic consequence of zygotic induction was observed with regard to decreased recombinant yield of markers distal to the prophage. This latter fact has been exploited in interrupted mating experiments, to locate the prophage at between 5 and 7 min on the Pseudomonas aeruginosa strain PAO map. It was further shown by transduction experiments that the prophage does not appear to be linked to clusters of co-transductional markers at the 5 and 7 min locations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

References

REFERENCES

Adams, M. H. (1959). Bacteriophages. New York: Interscience.CrossRefGoogle Scholar
Garro, A. J. & Marmur, J. (1970). Defective bacteriophages. Journal of Cellular Physiology 76, 253264.CrossRefGoogle ScholarPubMed
Holloway, B. W. (1955). Genetic recombination in Pseudomonas aeruginosa. Journal of General Microbiology 13, 572581.Google ScholarPubMed
Holloway, B. W., Egan, J. B. & Monk, M. (1960). Lysogeny in Pseudomonas aeruginosa. Australian Journal of Experimental Biology & Medical Science 38, 321330.CrossRefGoogle ScholarPubMed
Ito, S., Kageyama, M. & Egami, F. (1970). Isolation and characterisation of pyocins from several strains of Pseudomonas aeruginosa. Journal of General & Applied Microbiology 16, 205214.CrossRefGoogle Scholar
Jacob, F. & Campbell, A. (1959). Sur le système de répression assurant l'immunité chez les bactéries lysogènes. Compte rendus hebdomadaire des séances de l'académie des Sciences, Paris 248, 32193221.Google Scholar
Jacob, F. & Wollman, E. L. (1956). Sur les processus de conjugaison et de recombinaison génétique chez E. coli. I. L'induction par conjugaison ou induction zygotique. Annales de L'institut Pasteur 91, 486510.Google Scholar
Jacob, F. & Wollman, E. L. (1961). Sexuality and the Genetics of Bacteria. New York, London: Academic Press.Google Scholar
Krishnapillai, V. (1971). A novel transducing phage: Its role in recognition of a possible new host-controlled modification system in Pseudomonas aeruginosa. Molecular & General Genetics 114, 134143.CrossRefGoogle Scholar
Krishnapillai, V. & Carey, K. E. (1972). Chromosomal location of a prophage in Pseudomonas aeruginosa strain PAO. Genetical Research 20, 137140.CrossRefGoogle ScholarPubMed
Pemberton, J. M. & Holloway, B. W. (1972). Chromosome mapping in Pseudomonas aeruginosa. Genetical Research 19, 251260.CrossRefGoogle ScholarPubMed
Stanisich, V. A. & Holloway, B. W. (1969). Conjugation in Pseudomonas aeruginosa. Genetics 61, 327339.CrossRefGoogle ScholarPubMed
Szybalski, W. (1952). Gradient plate technique for the study of bacterial resistance. Science 116, 4548.Google Scholar
Woods, W. H. & Egan, J. B. (1972). Integration site of non-inducible coliphage 186. Journal of Bacteriology 111, 303307.CrossRefGoogle Scholar