Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:36:16.532Z Has data issue: false hasContentIssue false

Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, Bombyx mori

Published online by Cambridge University Press:  14 April 2009

Amornrat Promboon
Affiliation:
Department of Agrobiology, Faculty of Agriculture, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
Toru Shimada
Affiliation:
Department of Agrobiology, Faculty of Agriculture, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
Haruhiko Fujiwara
Affiliation:
Zoological Institute, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
Masahiko Kobayashi
Affiliation:
Department of Agrobiology, Faculty of Agriculture, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have constructed a linkage map of random amplified polymorphic DNAs (RAPDs) in Bombyx mori. We screened 320 10-mer primers, and found 243 clear polymorphic bands between C108 and p50 strains. In the F2 generation, segregation ratios of 168 bands were nearly 3:1 in a chi square test, showing Mendelian inheritance. The MAPMAKER program sorted 168 bands into 29 linkage groups and 10 unlinked loci at minimum LOD score 3·0, and determined orders of loci in each group, which contained 2–11 markers. It also detected typing errors in our data. We calculated map distances between pairs of neighbouring loci using recombination values in males and the Kosambi mapping function. Our RAPD map consists of 169 loci including the p locus, and the sum of map distances is approximately 900 cM. Linkage groups 1 and 2 of our map correspond to chromosomes 1 and 2 on the conventional linkage map because of linkage to sex and p, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Bender, W., Spierer, P., & Hogness, D. S., (1983). Chromosome walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. Journal of Molecular Biology 168, 1733.CrossRefGoogle ScholarPubMed
Berger, W., Meindl, A., van de Pol, T. J. R., Cremers, F. P. M., Ropers, H. H., Doerner, C., Monaco, A., Berger, A. A. B., Lebo, R., Warberg, M., Zergollern, L., Lorenz, B., Gal, A., Bleeker-Wagemakers, E. M., & Meitinger, T., (1992). Isolation of a candidate gene from Norrie disease by positional cloning. Nature Genetics 1, 199203.CrossRefGoogle ScholarPubMed
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W., (1980). Construction of a genetic map in man using restriction fragment length polymorphism. American Journal of Human Genetics 32, 314331.Google Scholar
Cox, R. D., Meiter-Ewert, S., Ross, M., Larin, Z., Monaco, A. P., & Lehrach, H., (1993). Genome mapping and cloning of mutations using yeast artificial chromosomes. Methods in Enzymology 225, 637653.CrossRefGoogle ScholarPubMed
Devos, K. M., & Gale, M. D., (1992). The use of random amplified polymorphic DNA markers in wheat. Theoretical and Applied Genetics 84, 567572.CrossRefGoogle ScholarPubMed
Dietrich, W., Katz, H., Lincoln, S. E., Shin, H. S., Friedman, J., Dracopoli, N. C., & Lander, E. S., (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423447.CrossRefGoogle ScholarPubMed
Doira, H., Fujii, H., Kawaguchi, Y., Kihara, H., & Banno, Y., (1992). Genetic Stocks and Mutations of Bombyx mori: Important Genetic Resources. Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 73 pp.Google Scholar
Echt, C. S., Erdahl, L. A., & McCoy, T. J., (1992). Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa. Genome 35, 8487.CrossRefGoogle ScholarPubMed
Faure, S., Noyer, J. L., Horry, J. P., Bakry, F., Lanaud, C., & de Leon, D. G., (1994). A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theoretical and Applied Genetics 87, 517526.CrossRefGoogle Scholar
Gage, L. P., (1974). Polyploidazation of the silk gland of Bombyx mori. Journal of Molecular Biology 86, 97108.CrossRefGoogle ScholarPubMed
Goldsmith, M. R., (1995). Genetics of the silkworm: revisiting an ancient model system in molecular model systems. In The Lepidoptera (ed. Goldsmith, M. R. and Wilkins, A. S.), pp. 2176. New York: Cambridge University Press.Google Scholar
Goldsmith, M. R., & Shi, J., (1994). A molecular map for the silkworm: constructing new links between basic and applied research. In Silk: Biology, Structure, Properties and Genetics (ed. Kaplan, D., Adams, W., Viney, C. and Farmer, B.). American Chemical Society Symposium series.Google Scholar
Grattapaglia, D., & Sederoff, R., (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137, 11211137.CrossRefGoogle ScholarPubMed
Hunt, G. J., & Page, R. E., (1992). Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theoretical and Applied Genetics 85, 520.CrossRefGoogle ScholarPubMed
Kesseli, R. V., Paran, I., & Michelmore, R. W., (1994). Analysis of a detailed genetic linkage map of Lactuca saliva (lettuce) constructed from RFLP and RAPD markers. Genetics 136, 14351446.CrossRefGoogle Scholar
Kosambi, D. D., (1944). The estimation of map distances from recombination values. Annals of Eugenics 12, 172175.CrossRefGoogle Scholar
Lander, E. S., & Botstein, D., (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185199.CrossRefGoogle ScholarPubMed
Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, K., Lincoln, S. E., & Newburg, A. L., (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174181.CrossRefGoogle ScholarPubMed
Levin, I., Crittenden, L. B., & Dodgson, J. B., (1993). Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. Genomics 16, 224230.CrossRefGoogle ScholarPubMed
Newbury, H. J., & Ford-Lloyd, B. V., (1993). The use of RAPD for assessing variation in plants. Plant Growth Regulation 12, 4351.CrossRefGoogle Scholar
O'Brien, S. J. (Ed.) (1993). Genetic Maps 6. New York: Cold Spring Harbor Press, 1545 pp.Google Scholar
Rasch, E. M., (1974). The DNA content of sperm and hemocyte nuclei of the silkworm, Bombyx mori L. Chromosoma 45, 126.CrossRefGoogle ScholarPubMed
Rasch, E. M., Barr, H. J., & Rasch, R. W., (1971). The DNA content of sperm of Drosophila melanogaster. Chromosoma 33, 118.CrossRefGoogle ScholarPubMed
Reiter, R. S., Williams, J. G. K., Feldmann, K. A., Rafalski, A., Tingey, S. V., & Scolnick, P. A., (1992). Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proceedings of the National Academy of Sciences, USA 89, 14771481.CrossRefGoogle ScholarPubMed
Stephens, J. C., Cavanaugh, M. L., Gradie, M. I., Mador, M. L., & Kidd, K. K., (1990). Mapping the human genome: current status. Science 250, 237244CrossRefGoogle ScholarPubMed
Tanksley, S. D., Ganal, M. W., Prince, J. P., Vicente, M. C., Bonierbale, M. W., Broun, P., Fulton, T. M., Giovannoni, J. J., Grandillo, S., Martin, G. B., Messeguer, R., Miller, J. C., Miller, L., Paterson, A. H., Pineda, O., Roder, M. S., Wing, R. A., Wu, W., & Young, N. D., (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 11411160.CrossRefGoogle ScholarPubMed
Tanksley, S. D., Young, N. D., Paterson, A. H., & Bonierbale, M. W., (1989). RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7, 257264.Google Scholar
Traut, W., (1976). Pachytene mapping in the female silkworm Bombyx mori L. (Lepidoptera). Chromosoma 58, 275284.CrossRefGoogle ScholarPubMed
Watkins, P. C., (1988). Restriction fragment length polymorphism (RFLP): applications in human chromosome mapping and genetic disease research. Bio Techniques 6, 310319.Google ScholarPubMed
Welsh, J., & McClelland, M., (1990). Fingerprinting genomes using PCR with arbitrary primes. Nucleic Acids Research 18, 72137218.CrossRefGoogle Scholar
Williams, J. G. K., Hanafey, M. K., Rafalski, J. A., & Tingey, S. V., (1993). Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymology 218, 740–740.Google ScholarPubMed
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V., (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535.CrossRefGoogle ScholarPubMed