Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T18:02:10.707Z Has data issue: false hasContentIssue false

Linkage disequilibrium in experimental populations of Drosophila simulans: a test of the random drift hypothesis

Published online by Cambridge University Press:  14 April 2009

Catherine Montchamp-Moreau
Affiliation:
Unité Associée 693 du C.N.R.S., Génétique des populations, Universités Paris 6 et Paris 7, 75251 Paris Cédex 05, France
Mariano Katz
Affiliation:
Unité Associée 693 du C.N.R.S., Génétique des populations, Universités Paris 6 et Paris 7, 75251 Paris Cédex 05, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Linkage disequilibrium between five polymorphic enzymic loci of the third chromosome (Esterase-6, Phosphoglucomutase, Esterase-C, Aldehyde Oxidase and Acid Phosphatase) was studied in experimental populations of Drosophila simulans. Gametic data were obtained by mating sampled males with homozygous females at the five loci. Four cage populations were initiated with flies caught from natural populations. Extensive linkage disequilibrium was detected after 25 or 34 generations. The effective size of these populations was estimated about 400. Monte-Carlo simulations were performed in order to determine whether the observed disequilibria could be due to genetic drift. The observed probability distribution of the experimental values of r (the gametic correlation coefficient) was consistent with the distribution expected under random genetic drift. Our results are thus in accordance with the neutralist hypothesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Alahiotis, S., Pelecanos, M. & Zacharopoulos, A. (1976). A contribution to the study of linkage disequilibrium in Drosophila melanogaster. Canadian Journal of Genetics and Cytology 18, 739745.CrossRefGoogle Scholar
Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A. & Perez-Salas, S. (1972). Enzyme variability in the Drosophila willistoni group. IV. Genie variation in natural populations of Drosophila willistoni. Genetics 70, 113139.CrossRefGoogle Scholar
Beardmore, J. A. & Ahmad, M. (1976). The genetics of some polymorphic esterases in Drosophila simulans. Genetica 46, 257270.CrossRefGoogle Scholar
Birley, A. J. (1974). Multi-locus polymorphism and selection in a population of Drosophila melanogaster. I. Linkage disequilibrium on chromosome III. Heredity 32, 122127.CrossRefGoogle Scholar
Franklin, I. R. & Lewontin, R. C. (1970). Is the gene the unit of selection? Genetics 65, 707734.CrossRefGoogle ScholarPubMed
Hedrick, P. W. (1983). Genetics of Populations. Boston: Science Books International.Google Scholar
Hill, W. G. (1976). Non-random association of neutral linked genes in finite populations. In Population Genetics and Ecology (ed. Karlin, S. and Nevo, E.), pp. 339376. New York: Academic Press.Google Scholar
Hill, W. G. & Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and Applied Genetics 38, 226231.CrossRefGoogle ScholarPubMed
Langley, C. H., Smith, D. B. & Johnson, F. M. (1978). Analysis of linkage disequilibria between allozyme loci in natural populations of Drosophila melanogaster. Genetical Research 32, 215230.CrossRefGoogle ScholarPubMed
Laurie-Ahlberg, C. C. & Weir, B. S. (1979). Allozymic variation and linkage disequilibrium in some laboratory populations of Drosophila melanogaster. Genetics 92, 12951314.CrossRefGoogle ScholarPubMed
Montchamp-Moreau, C. (1985). Analyse du déséquilibre gamétique dans des populations naturelles et expérimentales de Drosophila simulans. Thèse d'Etat, Université de Paris. 6.Google Scholar
Montchamp-Moreau, C. & Katz, M. (1986). A theoretical analysis of linkage disequilibrium produced by genetic drift in Drosophila populations. Genetical Research 48, 161166.CrossRefGoogle Scholar
Montchamp-Moreau, C. & Katz, M. (1987). Gametic disequilibrium between enzymatic loci in natural populations of Drosophila simulans. Génétique Sélection et Evolution (In the Press.)Google Scholar
O'Brien, S. J. & McIntyre, R. J. (1971). Transient linkage disequilibrium in Drosophila. Nature 230, 335336.CrossRefGoogle ScholarPubMed
Pearl, R., Allen, A. L. & Penniman, W. B. D. (1926). Culture media for Drosophila: a new synthetic medium and its influence on fertility at different densities of population. The American Naturalist 60, 357366.CrossRefGoogle Scholar
Pollak, E. (1983). A new method for estimating the effective population size from allele frequency changes. Genetics 104, 531548.CrossRefGoogle ScholarPubMed
Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B. (1971). Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polinotus). Studies in Genetics, VI. The University of Texas Publication 71037149.Google Scholar
Weir, W. B. & Hill, W. G. (1980). Effect of mating structure on variation in linkage disequilibrium. Genetics 95, 477488.CrossRefGoogle ScholarPubMed