Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T09:19:52.706Z Has data issue: false hasContentIssue false

Leaf peroxidases – A biochemical marker for the group 2 chromosomes in the Triticinae

Published online by Cambridge University Press:  14 April 2009

Angeles Bosch
Affiliation:
Departamento de Genética, Facultad de Biologica, Universidad Complutense, 28040 Madrid, Spain
Ana M. Figueiras
Affiliation:
Departamento de Genética, Facultad de Biologica, Universidad Complutense, 28040 Madrid, Spain
Maria T. Gonzalez-Jaen
Affiliation:
Departamento de Genética, Facultad de Biologica, Universidad Complutense, 28040 Madrid, Spain
Cesar Benito
Affiliation:
Departamento de Genética, Facultad de Biologica, Universidad Complutense, 28040 Madrid, Spain
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Structural genes for the leaf isozymes of peroxidases (E.C.1.11.1.7) have been located on chromosome arms 2BS, 2DS and probably 2AS of wheat, 2RS of cereal rye and on chromosome 2H of Hordeum vulgare. This character provides a useful genetic marker for these chromosome arms, and the results supports the notion of the conservation of gene synteny groups within the Triticinae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

Ainsworth, C. C., Johnson, H. M., Jackson, E. A., Miller, T. E. & Gale, M. D. (1984). The chromosomal locations of leaf peroxidase genes in hexaploid wheat, rye and barley. Theoretical and Applied Genetics 69, 205210.CrossRefGoogle ScholarPubMed
Benito, C. & Perez de la Vega, M. (1979). The chromosomal location of peroxidase isozymes of the wheat kernel. Theoretical and Applied Genetics 55, 7376.CrossRefGoogle ScholarPubMed
Benito, C., Figueiras, A. M. & Gonzalez-Jaen, M. T. (1984). Phosphoglucomutase- a biochemical marker for group 4 chromosomes in the Triticinae. Theoretical and Applied Genetics 68, 555557.CrossRefGoogle Scholar
Benito, C., Perez de la Vega, M. & Salinas, J. (1980). The inheritance of wheat kernel peroxidases. Journal of Heredity 71, 416418.CrossRefGoogle Scholar
Benito, C., Figueiras, A. M., Gonzalez-Jaen, M. T. & Salinas, J. (1985). Biochemical evidence of homoeology between wheat and barley chromosomes. Z. Pflanzenzuchtg 94, 307320.Google Scholar
Brown, A. H. D. & Allard, R. W. (1969). Inheritance of isozymes among the inbred parents of a reciprocal recurrent selection population of maize. Crop Science 9, 7275.CrossRefGoogle Scholar
Clegg, M. T. & Allard, R. W. (1973). The genetics of electrophoretic variants in Avena. 2. The esterase E1, E2, E5, E6 and anodal peroxidase APX4 loci in A. fatua. Journal of Heredity 64, 26.Google Scholar
Endo, T. (1981). Developmental modification and hybridization of allelic acid phosphatase isozymes in homoand heterozygotes for Acp-I locus in rice. Biochemical Genetics 19, 373384.CrossRefGoogle Scholar
Felder, M. R. (1976). Genetic control of four cathodal peroxidase isozymes in barley. Journal of Heredity 67, 3942.CrossRefGoogle Scholar
Figueiras, A. M., Gonzalez-Jaen, M.mT., Salinas, J. & Benito, C. (1985). Association of isozymes with a reciprocal translocation in cultivated rye (Secale cereale L.). Genetics 109, 177193.CrossRefGoogle ScholarPubMed
Garcia, P., Perez de la Vega, M. & Benito, C. (1982). The inheritance of rye seed peroxidases. Theoretical and Applied Genetics 61, 341351.CrossRefGoogle ScholarPubMed
Giraldez, R. & Orellana, J. (1979). Metaphase I bonds, crossing-over frequency and genetic length of specific chromosome arm of rye. Chromosoma 72, 377385.CrossRefGoogle Scholar
Hart, G. E. (1983). Hexaploid wheat (Triticum aestivum L. em Thell). In Isozymes in Plant Genetics and Breeding, part B (ed. Tanksley, S. D. and Orton, T. J.), pp. 3556. Amsterdam: Elsevier Science Publishers B. V.CrossRefGoogle Scholar
Hart, G. E. (1984). Biochemical loci of hexaploid wheat (Triticum aestivum 2n+42, genomes AABBDD). In Genetic maps 1984, vol. 3 (ed. O'Brien, S. J.), pp. 485490). New York: Cold Spring Harbor Laboratory.Google Scholar
Hart, G. E. & Tuleen, A. (1983). Introduction and characterization of alien genetic material. In Isozymes in Plant Genetics and Breeding, part A (ed. Tanksley, S. and Orton, T. J.), pp. 339362. Amsterdam: Elsevier Science Publishers B. V.CrossRefGoogle Scholar
Hart, G. E., Islam, A. K. M. R. & Shepherd, K. W. (1980). Use of isozymes as chromosome markers in the isolation of wheat–barley chromosome addition lines. Genetical Research 36, 311325.CrossRefGoogle Scholar
Kobrehel, K. & Feillet, P. (1975). Identification of genomes and chromosomes involved in peroxidase synthesis of wheat seed. Canadian Journal of Botany 53, 23362344.CrossRefGoogle Scholar
Macdonald, T. & Smith, H. H. (1972). Variation associated with an Aegilops umbellulata chromosome segment incorporated in wheat. 2. Peroxidase and leucine aminopeptidase isozymes. Genetics 72, 7786.CrossRefGoogle Scholar
Marshall, D. R. & Allard, R. W. (1969). The genetics of electrophoretic variants in Avena. 1. The esterase E4, E9, E10, phosphatase P5 and anodal peroxidase APX5 loci in A. barbata. Journal of Heredity 60, 1719.CrossRefGoogle Scholar
May, C. E., Vickery, R. S. & Driscoll, C. J. (1973). Gene control in hexaploid wheat. In Proceedings of the Fourth International Wheat Genetics Symposium (ed. Sears, E. R. and Sears, L. M. S.), pp. 843849. Columbia: University of Missouri.Google Scholar
Neuman, P. R. & Hart, G. E. (1983). Localization of a paralogous set of superoxide dismutase structural genes in the homoeologous group 2 chromosomes of hexaploid wheat. Genetics 104, s52.Google Scholar
Perez de la Vega, M. & Allard, R. W. (1984). Mating system and genetic polymorphism in populations of Secale cereale and S. vavilovii. Canadian Journal of Genetics and Cytology 26, 308317.CrossRefGoogle Scholar
Salinas, J. & Benito, C. (1983). Chromosomal location of genes controlling 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase isozymes in cultivated rye. Euphytica 32, 783790.CrossRefGoogle Scholar
Salinas, J. & Benito, C. (1984 a). Phosphatase isozymes in rye. Characterization, genetic control and chromosomal location. Z. Pflanzenzuchtg 93, 115136.Google Scholar
Salinas, J. & Benito, C. (1984 b). Chromosomal location of peroxidase structural genes in rye (Secale cereale L.). Z. Pfianzenzuchtg 93, 291308.Google Scholar
Salinas, J. & Benito, C. (1985 a). Chromosomal location of malate dehydrogenase structural genes in rye (Secale cereale L.) Z. Pflanzenzuchtg 94, 208217.Google Scholar
Salinas, J. & Benito, C. (1985 b). Chromosome locations of phosphoglucomutase, phosphoglucose isomerase and glutamate oxaloacetate transaminase structural genes in different rye cultivars. Canadian Journal of Genetics and Cytology 27, 105113.CrossRefGoogle Scholar
Salinas, J., Figueiras, A. M., Gonzalez-Jaen, M. T. & Benito, C. (1985). Chromosomal location of isozyme markers in wheat–barley addition lines. Theoretical and Applied Genetics 70, 192198.CrossRefGoogle ScholarPubMed
Sears, E. R. (1954). The aneuploids of common wheat. Missouri Agricultural Experimental Station Research Bulletin 572, 58 pp.Google Scholar
Sears, E. R. (1966). Nullisomic–tetrasomic combinations in hexaploid wheat. Chromosome manipulations and Plant Genetics: A supplement to Heredity 20, 2945.CrossRefGoogle Scholar
Sears, E. R. & Sears, L. M. S. (1979). The telocentric chromosomes of common wheat. Proceedings of the 5th International Wheat Genetics Symposium, vol. 2, New Delhi. pp. 389407.Google Scholar
Shaw, G. R. & Koen, A. L. (1968). Starch gel zone electrophoresis of enzymes. In Chromatographic and Electrophoretic Techniques (ed. Smith, I.), pp. 325364. Chichester, Sussex: Interscience Publishers.Google Scholar
Singh, R. J. & Robbelen, G. (1976). Giemsa banding technique reveals deletion within rye chromosomes in addition lines. Z. Pflanzenzuchtg 76, 1118.Google Scholar