Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:49:51.408Z Has data issue: false hasContentIssue false

A latitudinal cline in PM gonadal dysgenesis potential in Australian Drosophila melanogaster populations

Published online by Cambridge University Press:  14 April 2009

Ian A. Boussy
Affiliation:
Department of Population Biology, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Isofemale lines of Drosophila melanogaster from six localities along the east coast of Australia, spanning 2900 km and 26 degrees of latitude, were assayed for their gonadal dysgenesis characteristics in the PM system of hybrid dysgenesis. A strong clinal pattern with latitude was discovered. From north to south, the first two populations were typical strong P populations, and the next population was moderate P. The next population to the south was neutral (Q), with some weak P and weak M characteristics. The two southernmost populations were typical M populations. Much variance in P activity in P populations and in susceptibility to P activity in M populations was detected among isofemale lines. This clinal pattern with latitude of the PM system is paralleled by similar clinal patterns for frequencies of common cosmopolitan inversions and of certain allozymes in Australia. A model of introductions of flies with different characteristics in the north and south could account for the PM clinal pattern, but cannot account for an intermediate Q population, nor establish the inversion and isoenzyme dines at the same time. Current models of transposable element population dynamics are limited to single population dynamics, and are therefore inadequate for these clinal data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Angus, D. S. & Raisbeck, J. A. (1979). A transmissable factor involved in hybrid sterility in Drosophila melanogaster. Genetica 50, 8187.CrossRefGoogle Scholar
Anxolabéhère, D., Hu, Kai, Nouaud, D., Périquet, G. & Ronsseray, S. (1984). The geographical distribution of PM hybrid dysgenesis in Drosophila melanogaster. Générique, Sélèction er Evolution 16, 1526.Google ScholarPubMed
Anxolabéhère, D., Nouaud, D. & Périquet, G. (1982). Cytotype polymorphism of the PM system in two wild populations of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 79, 78017803.Google Scholar
Anxolabéhère, D., Nouaud, D., Périquet, G. & Tchen, P. (1985). P-element distribution in Eurasian populations of Drosophila melanogaster: a genetic and molecular analysis. Proceedings of the National Academy of Sciences, USA 82, 54185422.CrossRefGoogle ScholarPubMed
Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of PM hybrid dysgenesis: the role of the P element, a P strain specific transposable family. Cell 29, 9951004.CrossRefGoogle Scholar
Bock, I. R. & Parsons, P. A. (1981). Species of Australia and New Zealand. In Genetics and Biology of Drosophila vol. 3a (ed. Ashburner, M., Carson, H. L. and Thompson, J. N. Jr.), pp. 291308. New York: Academic.Google Scholar
Bregliano, J. C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 363409. New York: Academic.Google Scholar
Charlesworth, B. & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetical Research 42, 127.CrossRefGoogle Scholar
Coyne, J. A., Boussy, I. A., Prout, T., Bryant, S. H., Jones, J. S. & Moore, J. A. (1982). Long-distance migration of Drosophila. The American Naturalist 119, 589595.CrossRefGoogle Scholar
Daniels, S. B., McCarron, M., Love, C. & Chovnick, A. (1985 a). Dysgenesis induced instability of rosy locus transformation in Drosophila melanogaster: analysis of excision events and the selective recovery of control element deletions. Genetics 109, 95117.CrossRefGoogle ScholarPubMed
Daniels, S. B., Strausbaugh, L. D. & Armstrong, R. A. (1985 b). Molecularanalysis of Pelement behaviorin Drosophila simulans transformants. Molecular and General Genetics 200, 258265.CrossRefGoogle Scholar
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.CrossRefGoogle Scholar
Engels, W. R. (1984). A trans-acting product needed for P factor transposition in Drosophila. Science 226, 11941196.Google Scholar
Engels, W. R. (1986). On the evolution and population genetics of hybrid dysgenesis-causing transposable elements in Drosophila. Philosophical Transactions of the Royal Society, Ser. B 312, 205215.Google ScholarPubMed
Engels, W. R. & Preston, C. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: the biology of female and male sterility. Genetics 92, 161174.CrossRefGoogle ScholarPubMed
Engels, W. R. & Preston, C. R. (1980). Components of hybrid dysgenesis in a wild population of Drosophila melanogaster. Genetics 95, 111128.Google Scholar
Kaplan, N., Darden, T. & Langley, D. H. (1985). Evolution and extinction of transposable elements in Mendelian populations. Genetics 109, 459480.CrossRefGoogle ScholarPubMed
Kidwell, M. G.(1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 80, 16551659.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1984). Hybrid dysgenesis in Drosophila melanogaster: partial sterility associated with embryo lethality in the PM system. Genetical Research 44, 1128.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1985). Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. Genetics 111, 337350.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1986). Molecular and phenotypic aspects of the evolution of hybrid dysgenesis systems. In Evolutionary Processes and Theory (ed. Karlin, S. and Nevo, E.), pp. 169198. New York: Academic.Google Scholar
Kidwell, M. G., Frydryk, T. & Novy, J. B. (1983). The hybrid dysgenesis potential of Drosophila melanogaster strains of diverse temporal and geographical natural origins. Drosophila Information Service 59, 6369.Google Scholar
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833.Google Scholar
Kidwell, M. G. & Novy, J. B. (1985). The distribution of hybrid dysgenesis determinants in North American populations of D. melanogaster. Drosophila Information Service 61, 97100.Google Scholar
Kidwell, M. G., Novy, J. B. & Feeley, S. M. (1981). Rapid unidirectional change of hybrid dysgenesis in Drosophila. Journal of Heredity 72, 3238.CrossRefGoogle ScholarPubMed
Kiyasu, P. K. & Kidwell, M. G. (1984). Hybrid dysgenesis in Drosophila melanogaster: the evolution of mixed P and M populations maintained at high temperature. Genetical Research 44, 251259.CrossRefGoogle Scholar
Knibb, W. R. (1983). Chromosome inversion polymorphisms in Drosophila melanogaster. III. Gametic disequilibria and the contributions of inversion dines to the Adh and Gpdh clinesin Australasia. Generica 61, 139146.Google Scholar
Knibb, W. R., Oakeshott, J. G. & Gibson, J. B. (1981). Chromosome inversion polymorphisms in Drosophila melanogaster. I. Latitudinal dines and associations between inversions and Australasian populations. Genetics 98, 833847.CrossRefGoogle Scholar
MacKay, T. F. C. (1985). Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111, 351374.CrossRefGoogle ScholarPubMed
Malloch, J. R. (1923). Notes on Australian Diptera with descriptions. Proceedings of the Linnean Society of New South Wales 48, 601622.Google Scholar
Mettler, L. E., Voelker, R. A. & Mukai, T. (1977). Inversion dines in populations of Drosophila melanogaster. Genetics 87, 169176.CrossRefGoogle Scholar
Mukai, T. & Voelker, R. A. (1977). The genetic structure of natural populations of Drosophila melanogaster. XIII. Further studies on linkage disequilibrium. Genetics 86, 175185.Google Scholar
Oakeshott, J. G., Gibson, J. B., Anderson, P. R., Knibb, W. R., Anderson, D. G. & Chambers, G. K. (1982). Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution 36, 8696.CrossRefGoogle ScholarPubMed
O'Hare, K. & Rubin, G. M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 2535.CrossRefGoogle ScholarPubMed
Preston, C. R. & Engels, W. R. (1984). Movement of P elements within a P strain. Drosophila Information Service 60, 169170.Google Scholar
Sakoyama, Y., Todo, T., Ishiwa-Chigusa, S., Honjo, T. & Kondo, S. (1985). Structures of defective P transposable elements prevalent in natural Q and Q-derived M strains of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 82, 62366239.CrossRefGoogle ScholarPubMed
Schaefer, R. E., Kidwell, M. G. & Fausto-Sterling, A. (1979). Hybrid dysgenesis in Drosophila melanogaster: morphological and cytological studies of ovarian dysgenesis. Genetics 92, 11411152.CrossRefGoogle ScholarPubMed
Takada, S., Murai, M., Takanashi, E., Ohishi, K., Fukami, K., Hagiwara, N., Satta, Y. & Ishiwa, S. (1983). On the PM system in natural populations of D. melanogaster in and around Japan. Japanese Journal of Genetics 58, 686.Google Scholar
Todo, T., Sakoyama, Y., Chigusa, S. I., Fukunaga, A., Honjo, T. & Kondo, S. (1984). Polymorphism in distribution and structure of P elements in natural populations of Drosophila melanogaster in and around Japan. Japanese Journal of Genetics 59, 441451.Google Scholar
Voelker, R. A., Cockerham, C. C., Johnson, F. M., Schaffer, H. E., Mukai, T. & Mettler, L. E. (1978). Inversions fail to account for allozyme dines. Genetics 88, 515527.CrossRefGoogle Scholar
Voelker, R. A., Greenleaf, A. L., Gyurkovics, H., Wisely, G. B., Huang, S.-M. & Searles, L. L. (1984). Frequent imprecise excision among reversions of a P element-caused lethal mutation in Drosophila. Genetics 107, 279294.CrossRefGoogle Scholar
Yamamoto, A., Hihara, F. & Watanbe, T. K. (1984). Hybrid dysgenesis in Drosophila melanogaster: predominance of Q factor in Japanese populations and its change in the laboratory. Genetica 63, 7177.Google Scholar