Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T06:07:37.805Z Has data issue: false hasContentIssue false

Lack of correlation between dysgenic traits in the hobo system of hybrid dysgenesis in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

C. Bazin*
Affiliation:
Laboratoire Population, Génétique et Evolution, CNRS, 13 avenue de la Terrasse, 91178 Gifsur Yvette, France
D. Higuet
Affiliation:
Laboratoire Dynamique du Génome et Evolution, Institut J. Monod, 2 place Jussieu, 75005 Paris, France
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Currently in the hobo system of hybrid dysgenesis, strain classification is based on the presence/absence of the 2·6 kb Xho I restriction fragment. Using this criterion, strains are classified as: (1) H strains when full-size elements are detected by presence of a 2·6 kb Xho I restriction fragment; they can also contain internally deleted elements; (2) DH strains when only deleted elements are detected (Xho I restriction fragment less than 2·6 kb); (3) E strains, devoid of any restriction fragment equal to or less than 2·6 kb in length. In addition, the strains can be classified on their ability to generate gonadal atrophy (GD sterility) when males of a studied strain are crossed with females from an E strain (dysgenic cross). Here we try to define the nature of the dysgenic cross, which leads us to analyse the different components of the dysgenic syndrome and to look for eventual correlations between them. Molecular analysis, GD sterility tests, hobo mobilization with the haw strain and the vgal strain, and hereditary transmission of the instability at the vg locus have been assayed in different strains. We show that the occurrence of GD sterility depends on the tested H strains as expected, but also on the E strains used. On the other hand we do not find any correlation between the different dysgenic parameters. Our data reveal that molecular and GD sterility tests are not sufficient to classify strains in the hobo system, and that all the components of the dysgenic syndrome must be taken into account. Our results are discussed with regard to active and full-size elements in relation to the structure of the S region where an amino acid sequence (TPE) presents a repetition polymorphism

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Bazin, C., Lemeunier, F., Periquet, G., & Silber, J., (1991). Genetic analysis of υgal: a spontaneous and unstable mutation at the vestigial locus in Drosophila melanogaster. Genetical Research 57, 235243.CrossRefGoogle Scholar
Bazin, C., Williams, J., Bell, J., & Silber, J., (1993). A deleted hobo element is involved in the unstable thermosensitive νgal mutation at the vestigial locus in D. melanogaster. Genetical Research 61, 171176.Google Scholar
Blackman, R. K., & Gelbart, W. M., (1989). The transposable element hobo of Drosophila melanogaster. In: Mobile DNA (ed. Howe, D. E., & Howe, M.M.), pp. 523531. Washington, DC: American Society for Microbiology Publications.Google Scholar
Blackman, R. K., Grimaila, R., Koehler, M. M. D., & Gelbart, W. M., (1987). Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49, 497505.Google Scholar
Blackman, R. K., Koehler, M. M. D., Grimaila, R., & Gelbart, W. M., (1989). Identification of a fully-functional hobo transposable element and its use for germline transformation of Drosophila. EM BO Journal 8, 211217.Google ScholarPubMed
Calvi, B. R., & Gelbart, W. M., (1994). The basis for germline specificity of the hobo transposable element in Drosophila melanogaster. EM BO Journal 13, 16361644.Google ScholarPubMed
Calvi, B. R., Hong, T. J., Findley, S. D., & Gelbart, W. M., (1991). Evidence for a common evolutionary origin of inverted repeat transposon in Drosophila. and plants: hobo, ativator and Tam3. Cell 66, 465471.CrossRefGoogle Scholar
Ho, Y. T., Weber, S. M., & Lim, J. K., (1993). Interacting hobo transposons in an inbred strain and interaction regulation in hybrids of D. melanogaster. Genetics 134, 895908.CrossRefGoogle Scholar
Ish-Horowicz, D., Pinchin, S. M., Artavanistsakonas, S., & Mirault, M., (1979). Genetic and molecular analysis of the 87A7 and 87C7 heat-inducible loci of D. melanogaster. Cell 18, 13511358.CrossRefGoogle ScholarPubMed
Lim, J. K., (1988). Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proceeding of the National Academy of Sciences, USA 85, 91539157.CrossRefGoogle ScholarPubMed
Lindsley, D. L., & Grell, E. H., (1968). Genetic Variations of Drosophila melanogaster. Carnegie Institute Washington Publication no. 6.Google Scholar
Louis, C., & Yannopoulos, G., (1988). The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster. Oxford Survey Eukaryotic Genes 5, 205250.Google ScholarPubMed
McGinnis, W., Shermoen, A. W., & Beckendorf, S., (1983). A transposable element inserted just 5′ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34, 7584.CrossRefGoogle ScholarPubMed
Periquet, G., Hamelin, M. H., Kalmes, R., & Eeken, J., (1990). Hobo elements and their deletion-derivative sequences in D. melanogaster and in its sibling species D. simulans, D. mauritiana and D. sechellia. Genetique Selection Evolution 22, 393402.CrossRefGoogle Scholar
Periquet, G., Lemeunier, F., Bigot, Y., Bazin, C., Ladeveze, V., Eeken, J., Galindo, M. I., Pascual, L., & Boussy, I., (1994). The evolutionary genetics of the hobo transposable element in the Drosophila melanogaster complex. Genetica 93, 7090.CrossRefGoogle ScholarPubMed
Sheen, F. M., Lim, J. K., & Simmons, H. J., (1993). Genetic instability in D. melanogaster mediated by hobo elements. Genetics 133, 315334.CrossRefGoogle Scholar
Smith, D., Wohlgemuth, J., Calvi, B. R., Franklin, I., & Gelbart, W. M., (1993). hobo enhancer trapping mutagenesis in Drosophila.reveals an insertion specificity different from P elements. Genetics 135, 10631076.CrossRefGoogle ScholarPubMed
Stamatis, N., Monastirioti, M., Yannopoulos, G., & Louis, C., (1989). The P-M and the 23.5MRF (hobo) systems of hybrid dysgenesis in Drosophila melanogaster are independent of each other. Genetics 123, 379387.CrossRefGoogle Scholar
Streck, R. D., MacGaffey, J. E., & Beckendorf, S. K., (1986). The structure of hobo element hobo and their site of insertion. EM BO Journal 5, 36153623.Google Scholar
Warren, W. D., Atkinson, P. W., & O'Brochta, D. A., (1994). The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-element of the hobo, Ac and Tarn 3 (hAT) element family. Genetical Research 64, 8797.CrossRefGoogle Scholar
Yannopoulos, G., Stamatis, N., Monastirioti, M., & Louis, C., (1987). hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell 49, 487495.CrossRefGoogle Scholar
Yannopoulos, G., Zabalou, S., Stamatis, N., & Tsamathis, G., (1994). Differential regulation of P and hobo mobile elements by two laboratory strains of Drosophila melanogaster. Genetical Research 63, 129137.CrossRefGoogle ScholarPubMed