Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T06:14:03.117Z Has data issue: false hasContentIssue false

Isolation, characterization and RFLP linkage mapping of a DNA repeat family of Solanum spegazzinii by which chromosome ends can be localized on the genetic map of potato

Published online by Cambridge University Press:  14 April 2009

C. Gebhardt*
Affiliation:
Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
B. Eberle
Affiliation:
Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
C. Leonards-Schippers
Affiliation:
Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
B. Walkemeier
Affiliation:
Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
F. Salamini
Affiliation:
Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a random sample of 2263 cloned genomic DNA fragments of the wild potato species Solanum spegazzinii six related, highly repetitive fragments (SPG repeat family) were identified that were present in much higher copy numbers in S. spegazzinii when compared with the closely related cultivated potato S. tuberosum. The SPG repeat family was organized in long arrays of multiple copies. Cross hybridization experiments with 29 wild and cultivated Solanum species and with the related tomato showed specificity of the SPG repeat family for tuber-bearing Solanum species. Among tuber bearing Solanum species a high degree of variation was observed for restriction fragment length and copy number. The variation in copy number was not correlated with established taxonomic relationships between tuber-bearing Solanum species. DNA sequence analysis revealed a subrepeat structure of 120–140 base pairs embedded in longer repeat units of variable length. Length polymorphisms between highly repeated restriction fragments detected by the SPG probes were used for segregation- and linkage analysis in four mapping populations of potato, for which RFLP maps had been constructed. Twelve loci were identified, eleven of which mapped to the distal ends of nine linkage groups. All the evidence suggested that the SPG repeat family represents a satellite repeat members of which are localized in the subtelomeric region of potato chromosomes. The SPG repeat family could be used, therefore, for completing the genetic map of potato.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Anderson, S., (1981). Shotgun Dna sequencing using cloned DNasel generated fragments. Nucleic Acids Research 9, 30153017.CrossRefGoogle Scholar
Barone, A., Ritter, E., Schachtschabel, U., Debener, T., Salamini, F., & Gebhardt, C., (1990). Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Molecular & General Genetics 224, 177182.CrossRefGoogle Scholar
Bedbrook, J. R., Jones, J., O'Dell, M., Thompson, R. D., & Flavell, R. B., (1980). A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545560.CrossRefGoogle Scholar
Birnboim, H. C., & Doly, J., (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 1513.CrossRefGoogle ScholarPubMed
Debener, T., Salamini, F., & Gebhardt, C., (1990). Phylogeny of wild and cultivated Solanum species based on nuclear restriction fragment length polymorphisms (RFLPs). Theoretical & Applied Genetics 79, 360368.CrossRefGoogle Scholar
Feinberg, A. F., & Vogelstein, B., (1984). A technique for radiolabelling DNA restriction fragments to high specific activity. Addendum Analytical Biochemistry 137, 266267.Google ScholarPubMed
Ganal, M. W., Broun, P., & Tanksley, S. D., (1992). Genetic mapping of tandemly repeated telomeric DNA sequences in tomato (Lycopersicon esculentum). Genomic 14, 444448.CrossRefGoogle ScholarPubMed
Ganal, M. W., Lapitan, N. L. V., & Tanksley, S. D., (1988). A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum). Molecular & General Genetics 213, 262268.CrossRefGoogle Scholar
Ganal, M. W., Lapitan, N. L. V., & Tanksley, S. D., (1991). Macrostructure of the tomato telomeres. The Plant Cell 3, 8794.Google ScholarPubMed
Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeier, B., Schachtschabel, U., Kaufmann, H., Thompson, R. D., Bonierbale, M. W., Ganal, M. W., Tanksley, S. D., & Salamini, F., (1991). RFLP maps of potato and their alignment with the homeologous tomato genome. Theoretical & Applied Genetics 83, 4957.CrossRefGoogle Scholar
Gebhardt, C., Ritter, E., Debener, T., Schachtschabel, U., Walkemeier, B., Ugrig, H., & Salamini, F., (1989). RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical & Applied Genetics 78, 6575.CrossRefGoogle ScholarPubMed
Gebhardt, C., Ritter, E., & Salamini, F., (1994). RFLP map of the potato. In DNA-based Markers in Plants (ed. Phillips, R. L., Vasil, I. K.), pp. 271285, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Genetics Computer Group (1991). Program Manual for the GCG Package, Version 7, April 1991, 575 Science Drive, Madison, Wisconsin, USA 53711.Google Scholar
Grundstein, M., & Hogness, D. S., (1975). Colony hybridization: a method of the isolation of cloned Dnas that contain a specific gene. Proceedings of the national Academy of Sciences USA 72, 39613965.CrossRefGoogle Scholar
Hawkes, J. G., (1990). The Potato—Evolution, Biodiversity and Genetic Resources. London: Belhaven Press.Google Scholar
Heidecker, G., & Messing, J., (1983). Sequence analysis of zein cDnas obtained by an efficient mRna cloning method. Nucleic Acids Research 11, 48914906.CrossRefGoogle ScholarPubMed
Huaman, Z., & Ross, R. W., (1985). Updated listing of potato species, names, abbreviations and taxonomy status. American Potato Journal 62, 629641.CrossRefGoogle Scholar
John, B., & Miklos, G. L. G., (1979). Functional aspects of satellite DNA and heterochromatin. International Review of Cytology 58, 1114.CrossRefGoogle ScholarPubMed
Junghans, H., & Metzlaff, M., (1988). Genome specific, highly repeated sequences of Hordeum vulgare: cloning, sequencing and squash dot test. Theoretical & Applied Genetics 76, 728732.CrossRefGoogle ScholarPubMed
Landsmann, J., & Uhrig, H., (1985). Somaclonal variation in Solanum tuberosum detected at the molecular level. Theoretical & Applied Genetics 71, 500505.CrossRefGoogle ScholarPubMed
Lapitan, N. L., Ganal, M. W., & Tanksley, S. D., (1989). Somatic chromosome karyotype of tomato based on in situ hybridization of the TGRI satellite repeat. Genome 32, 992998.CrossRefGoogle Scholar
Lapitan, N. L. V., (1982). Organization and evolution of higher plant nuclear genomes. Genome 35, 171181.CrossRefGoogle Scholar
Martinez-Zapater, J., Estelle, M., & Somerville, C., (1986). A highly repeated DNA sequence in Arabidopsis thaliana. Molecular & General Genetics 204, 417423.CrossRefGoogle Scholar
Messing, J., & Vieira, J., (1982). A new pair of M13 vectors for selecting either DNA strand of double-digested restriction fragments. Gene 19, 269276.CrossRefGoogle Scholar
Metzlaff, M., Tröbner, W., Baldauf, F., Schlegel, R., & Cullum, J., (1986). Wheat specific repetitive DNA sequences-construction and characterization of four different genomic clones. Theoretical & Applied Genetics 72, 207210.CrossRefGoogle ScholarPubMed
Miklos, G., (1986). Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. In Molecular Evolutionary Genetics (ed. MacIntyre, R.), pp. 241322. New York: Plenum Press.Google Scholar
Pehu, E., Thomas, M., Poutala, T., Karp, A., & Jones, M. G. K., (1990). Species-specific sequences in the genus Solanum: identification, characterization and application to study somatic hybrids of S. brevidens and S. tuberosum. Theoretical & Applied Genetics 80, 693698.CrossRefGoogle ScholarPubMed
Ritter, E., Gebhardt, C., & Salamini, F., (1990). Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125, 645654.CrossRefGoogle ScholarPubMed
Ross, H., (1986). Potato-breeding — problems and perspectives. Journal of Plant Breeding Supplement 13.Google Scholar
Sambrook, J., Fritsch, E. F., & Maniatis, T., (1989). Molecular Cloning, A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sanger, F., Nicklen, S., & Coulson, A. R., (1977). Dna sequencing with chain-terminating inhibitors. Proceedings of the national Academy of Sciences USA 74, 54635467.CrossRefGoogle ScholarPubMed
T., Schmidt, Junghans, H., & Metzlaff, M., (1990). Construction of Beta procumbens-specific DNA probes and their application for the screening of B. vulgaris × B. procumbens (2n =19) addition lines. Theoretical & Applied Genetics 79, 177181.Google Scholar
Schweizer, G., Borisjuk, N., Borisjuk, L., Stadler, M., Stelzer, T., Schilde, L., & Hemleben, V., (1993). Molecular analysis of highly repeated genome fractions in Solanum and their use as markers for the characterization of species and cultivars. Theoretical & Applied Genetics 85, 801808.CrossRefGoogle ScholarPubMed
Schweizer, G., Ganal, M., Ninnemann, H., & Hemleben, V., (1988). Species-specific DNA sequences for identification of somatic hybrids between Lycopersicon esculentum and Solanum acaule. Theoretical & Applied Genetics 75, 679684.CrossRefGoogle Scholar
Southern, E. M., (1975). Detection of specific sequences among DNA fragment separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Zamir, D., & Tanksley, S. D., (1988). Tomato genome is comprised largely of fast-evolving, low copy-number sequences. Molecular & General Genetics 213, 254261.CrossRefGoogle Scholar