Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T09:35:04.649Z Has data issue: false hasContentIssue false

Interaction between the plasmid R6K and Escherichia coli with defective DNA polymerase I

Published online by Cambridge University Press:  14 April 2009

D. J. Tweats
Affiliation:
Genetics Department, University College of Swansea, U.K., and the Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, U.K.
J. T. Smith
Affiliation:
Genetics Department, University College of Swansea, U.K., and the Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, U.K.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Initial experiments demonstrated that the plasmid R6K cannot be transferred to or maintained readily in the E. coli DNA polymerase I deficient strain JG138 polA1. Results with E. coli MM386 polA12 (R6K), which has a temperature sensitive polymerase I enzyme, showed cell division becomes abnormal when the polymerase I enzyme of the host bacteria is inactivated at the restrictive temperature. Under conditions of polymerase I deficiency, R6K replication, as measured by monitoring R-factor-mediated β-lactamase activity, also becomes abnormal with the loss of multiple R6K copies per cell and the apparent maintenance of a single R-factor copy per cell.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Ambrosio, R. E. (1977). Influence of rec and pol genes on the maintenance of a Proteus plasmid (P-lac) in Escherichia coli. Journal of Bacteriology 131, 689692.CrossRefGoogle ScholarPubMed
Clowes, R. C. & Rowley, D. (1954). Some observations on linkage effects in genetic recombination in Escherichia coli K12. Journal of General Microbiology 11, 250260.CrossRefGoogle Scholar
Dale, J. W. & Smith, J. T. (1971). Some relationships between R-factor and chromosomal β-lactamase in Gram-negative bacteria. Biochemistry Journal 123, 507512.CrossRefGoogle ScholarPubMed
Datta, N. & Kontomichalou, P. (1965). Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae, Nature, London 208, 239241.CrossRefGoogle ScholarPubMed
Davis, B. D. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 1728.CrossRefGoogle ScholarPubMed
Durkacz, B. W. & Sherratt, D. J. (1973). Segregation kinetics of colicinogenic factor ColE1 from bacterial population temperature-sensitive for DNA polymerase I. Molecular and General Genetics 121, 7175.CrossRefGoogle Scholar
Grindley, N. D. F. & Kelley, W. S. (1976). Effects of different alleles of the E. coli K12 polA gene on the replication of non-transferring plasmids. Molecular and General Genetics 143, 311318.CrossRefGoogle Scholar
Hedges, R. W. & Datta, N. (1972). R124, an fi + R-factor of a new compatibility class. Journal of General Microbiology 71, 403405.CrossRefGoogle ScholarPubMed
Hedges, R. W., Datta, N., Coetzee, J. N. & Dennison, S. (1973). R factors from Proteus morganii. Journal of General Microbiology 77, 249259.CrossRefGoogle ScholarPubMed
Hedges, R. W., Datta, N., Kontomichalou, P. & Smith, J. T. (1974). Molecular specificities of R-factor-determined beta-lactamases: Correlation with plasmid compatibility. Journal of Bacteriology 117, 5662.CrossRefGoogle ScholarPubMed
Helinski, D. R. (1973). Plasmid determined resistance to antibiotics: molecular properties of R-factors. Annual Review of Microbiology 27, 437470.CrossRefGoogle ScholarPubMed
Kingsbury, D. T. & Helinski, D. R. (1970). DNA polymerase as a requirement for the maintenance of the bacterial plasmid colicinogenic factor El. Biochemical and Biophysical Research Communications 41, 15381544.CrossRefGoogle Scholar
Konrad, E. B. & Lehman, I. R. (1974). A conditional lethal mutant of Escherichia coli K12 defective in the 5′-3′ exonuclease associated with DNA polymerase I. Proceedings of the National Academy of Science U.S.A., 71, 20482051.CrossRefGoogle ScholarPubMed
Kontomichalou, P., Mitani, M. & Clowes, R. C. (1970). Circular R-factor molecules controlling penicillinase synthesis replicating in Escherichia coli under either relaxed or stringent control Journal of Bacteriology 104, 3444.CrossRefGoogle ScholarPubMed
Kupersztoch, Y. M. & Helinski, D. R. (1973). A catenated DNA molecule as an intermediate in the replication of the transfer factor R6K in Escherichia coli. Biochemical and Biophysical Research Communications 54, 14511459.CrossRefGoogle ScholarPubMed
Lehman, I. R. & Chien, J. R. (1973). Persistance of Deoxyribonucleic acid polymerase I and its 5·3 exonuclease activity in polA mutants of Escherichia coli K12. Journal of Biological Chemistry 248, 77177723.CrossRefGoogle ScholarPubMed
Macrina, F. L., Weatherly, G. G. & Curtiss, R. III (1974). R6K plasmid replication. Influence of chromosomal genotype in minicell-producing strains of Escherichia coli. Journal of Bacteriology 120, 13871400.CrossRefGoogle ScholarPubMed
Meynell, E. & Datta, N. (1966). The relation of resistance transfer factors to the F factor (sex factor) of Escherichia coli K-12. Genetical Research, Cambridge 7, 134140.CrossRefGoogle Scholar
Moillo-Batt, A. & Richmond, M. H. (1976). The survival of RP1-1 in Escherichia coli and the influence of the rec and polA genes in the process. Genetical Research, Cambridge 28, 1526.CrossRefGoogle Scholar
Monk, & Kinross, J. (1972). Conditional lethality of recA and recB derivatives of a strain of Escherichia coli K-12 with a temperature-sensitive Deoxyribonucleic acid polymerase I. Journal of Bacteriology 109, 971978.CrossRefGoogle ScholarPubMed
Monk, M., Peacy, M. & Gross, J. D. (1971). Repair of damage induced by ultraviolet light in DNA polymerase I-deficient Escherichia coli cells. Journal of Molecular Biology 58, 623630.CrossRefGoogle Scholar
Setlow, P. & Kornberg, A. (1972). Deoxyribonucleic acid polymerase: Two distinct enzymes in one polypeptide II. A proteolytic fragment containing the 5′-3′ exonuclease function. Restoration of intact enzyme function from the two polypeptide fragments. The Journal of Biological Chemistry 247, 232240.CrossRefGoogle Scholar
Smith, J. T. (1969). R-factor gene expression in Gram-negative bacteria. Journal of General Microbiology 55, 109120.CrossRefGoogle ScholarPubMed
Smith, & Wyatt, J. M. (1974). Relation of R-factor and chromosomal β-lactamase with the periplasmic space. Journal of Bacteriology 117, 931939.CrossRefGoogle ScholarPubMed
Tait, R. C. & Smith, D. W. (1974). Roles for E. coli DNA polymerases I, II and III in DNA replication. Nature, London 249, 116119.CrossRefGoogle Scholar
Taylor, A. L. & Trotter, C. S. (1972). Linkage map of Escherichia coli strain K–12. Bacteriological Reviews 36, 504524.CrossRefGoogle ScholarPubMed
Terawaki, Y., Kakizawa, Y., Takayasu, H. & Yoshikawa, M. (1968). Temperature sensitivity of cell growth in Escherichia coli associated with the temperature sensitive R (Km) factor. Nature, London 219, 284285.CrossRefGoogle ScholarPubMed
Thompson, R. H. S. (1962). Classification and nomenclature of enzymes and coenzymes. Nature, London 193, 12271231.CrossRefGoogle ScholarPubMed
Tweats, D. J. (1975). Genetic interactions between R-factors and their bacterial hosts. PhD thesis, University of London.Google Scholar
Tweats, D. J., Pinney, R. J. & Smith, J. T. (1974). R-factor-mediated nuclease activity involved in thymineless elimination. Journal of Bacteriology 118, 790795.CrossRefGoogle ScholarPubMed
Tweats, D. J. & Smith, J. T. (1975). R. factor replication in an E. coli host with defective DNA polymerase I. Journal of Pharmacy and Pharmacology 27, 46p.Google Scholar
Waddell, W. J. (1956). A simple ultraviolet sepectrophotometric method for the determination of protein. Journal of Laboratory Clinical Medicine 48, 311314.Google ScholarPubMed