Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T06:38:19.338Z Has data issue: false hasContentIssue false

Insertion of the retroposable element, jockey, near the Adh gene of Drosophila melanogaster is associated with altered gene expression

Published online by Cambridge University Press:  14 April 2009

Lisa D. White*
Affiliation:
Department of Biology, University of Houston, Houston, TX 77204–5513
James W. Jacobson
Affiliation:
Department of Biology, University of Houston, Houston, TX 77204–5513
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The alcohol dehydrogenase (Adh) gene of Drosophila melanogaster is well suited to be a gene expression reporter system. Adh produces a measurable phenotype at both the enzyme and mRNA levels. We recovered a spontaneous transposable element (TE) insertion mutation near the Adh gene. The insertion is a truncated retroposable element, jockey, inserted upstream of the adult Adh enhancer region. Comparisons between the Adhjockey allele and its direct wild-type ancestral allele were made in an isogenic background (i.e. identical cis and trans factors). Differences in Adhjockey expression compared with the wild-type can be attributed solely to the presence of the jockey element. This jockey insertion results in a decrease in adult mRNA transcript levels in the Adhjockey homozygous lines relative to the wild-type counterpart and accounts for a correlated decrease in alcohol dehydrogenase (ADH) enzyme activity. The larval ADH activity levels are not detectably different.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

REFERENCES

Aaron, C. S., (1979). X-ray induced mutations affecting the level of the enzyme alcohol dehydrogenase E.C. 1.1.1.1 in Drosophila melanogaster progeny and genetic analysis of null-enzyme mutants. Mutation Research 63, 137138.CrossRefGoogle Scholar
Chia, W., Savakis, C, Karp, R., Pelham, H., & Ashburner, M., (1985). Mutation of the Adh gene of Drosophila melanogaster containing an internal tandem duplication. Journal of Molecular Biology 186, 679688.CrossRefGoogle ScholarPubMed
Corbin, V., & Maniatis, T., (1990). Identification of cis regulatory elements required for larval expression of the Drosophila melanogaster alcohol dehydrogenase gene. Genetics 124, 637646.CrossRefGoogle ScholarPubMed
David, J. R., Herrewegge, J. van, de Scheemaeker-Louis, M. & Pla, E., (1981). Drosophila alcohol dehydrogenase: detoxification of isopropanol and acetone, substances not used in energy metabolism. Heredity 47, 263268.CrossRefGoogle Scholar
Dunn, R. C., & Laurie, C. C., (1995) Effects of a transposable element insertion on Alcohol Dehydrogenase expression in Drosophila melanogaster. Genetics 140, 667677.CrossRefGoogle ScholarPubMed
Engels, W. R., (1989). P elements in Drosophila melanogaster. In Mobile DNA, edited by Berg, D. & Howe, M., pp. 437484. Washington D.C: American Society of Microbiology.Google Scholar
Feinberg, A. P., & Vogelstein, B., (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Geyer, P. K., & Corces, V. G., (1992). DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes and Development 6, 18651873.CrossRefGoogle ScholarPubMed
Itoh, M., Iwabuchi, M., Yorimoto, M., & Hori, S., (1988). A transposable genetic element associated with positive regulation of G6PD gene expression in Drosophila melanogaster. Genetical Research, Cambridge 52, 169177.Google Scholar
Jacobson, J. W., (1991). Estimation of transposable element copy number by relative hybridization: mariner in Drosophila mauritiana. Drosophila Information Service 70, 252254.Google Scholar
Laurie, C. C., & Stam, L. F., (1988). Quantitative analysis of RNA produced by Slow and Fast alleles of Adh in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 85, 51615165.CrossRefGoogle ScholarPubMed
Laurie-Ahlberg, C. C., Maroni, G., Bewley, G. C., Lucchesi, J. C., & Weir, B. S., (1980). Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 11, 10731077.CrossRefGoogle Scholar
Levis, R., O'Hare, K., & Rubin, G. M., (1984). Effects of transposable element insertions on RNA encoded by the white gene of Drosophila. Cell 38, 471481.CrossRefGoogle Scholar
Lim, J. K., (1988). Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 85, 91539157.CrossRefGoogle ScholarPubMed
Lindsley, D. L., & Zimm, G. G., (1992). The Genome of Drosophila melanogaster. New York: Academic Press.Google Scholar
Lowry, O. H., Rosenbrough, N., Farr, A. L., & Randall, R. J., (1951). Protein measurements with the folin reagent. Journal of Biological Chemistry 193, 265268.CrossRefGoogle Scholar
Lyttle, T. W., & Haymer, D. S., (1993). The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster. In Transposable Elements and Evolution, ed. McDonald, J. F., pp. 218229. Dordrecht, The Netherlands: Kluwer.Google Scholar
MacKay, T. F. C., (1985). Transposable element induced response to artificial selection in Drosophila melanogaster. Genetics 111, 351374.CrossRefGoogle ScholarPubMed
Maroni, G., & Laurie-Ahlberg, C. C., (1983). Genetic control of Adh expression in Drosophila melanogaster. Genetics 105, 921933.CrossRefGoogle ScholarPubMed
Maroni, G., Laurie, C. C., Adams, D. A., & Wilton, A. N., (1982). Genetic variation in the expression of ADH in Drosophila melanogaster. Genetics 101, 431446.CrossRefGoogle ScholarPubMed
McDonald, J. F., (1993). Evolution and consequences of transposable elements. Current Opinion in Genetics and Development 3, 855864.CrossRefGoogle ScholarPubMed
Mogila, V. A., Ladvishenko, A. B., Simonova, O., & Gerasimova, T. I., (1993). Intragenic suppression: Stalker, a retrovirus-like transposable element, can compensate for a deviciency at the cut locus of Drosophila melanogaster, In Transposable Elements and Evolution, ed. McDonald, J. F., pp. 2026. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Posakony, J. W., Fischer, J. A., & Maniatis, T., (1986). Identification of DNA sequences required for the regulation of Drosophila alcohol dehydrogenase gene expression. Cold Spring Harbor Symposia on Quantitative Biology 50, 515520.Google Scholar
Priimägi, A., Mizrokhi, L., & Ilyin, Y., (1988). The Drosophila mobile element jockey belongs to LINEs and contains coding sequences homologous to some retroviral proteins. Gene 70, 253262.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F., & Maniatis, T., (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Savakis, C, Ashburner, M., & Willis, J. H., (1986). The expression of the gene coding for alcohol dehydrogenase during the development of Drosophila melanogaster. Developmental Biology 114, 194207.CrossRefGoogle Scholar
Stam, L. F., & Laurie-Ahlberg, C. C., (1982). A semiautomated procedure for the assay of 23 enzymes from Drosophila melanogaster. Insect Biochemistry 12, 537544.Google Scholar
Stavenhagen, J. B., & Robins, D. M., (1988). An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55, 247254.CrossRefGoogle ScholarPubMed
Strand, D. J., & Mcdonald, J. F., (1989). Insertion of a copia element 5′ to the Drosophila melanogaster alcohol dehydrogenase gene (Adh) is associated with altered developmental and tissue-specific patterns of expression. Genetics 121, 787794.Google Scholar
Tsubota, S. L., & Dang-Vu, H., (1991). Capture of flanking DNA by a P element in Drosophila melanogaster: creation of a transposable element. Proceedings of the National Academy of Sciences of the USA 88, 693697.CrossRefGoogle Scholar
White, L. D., & Jacobson, J. W., (1996). Molecular analysis of a spontaneous insertion mutation near the Alcohol dehydrogenase gene of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, in press.CrossRefGoogle ScholarPubMed