Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:35:20.066Z Has data issue: false hasContentIssue false

Inheritance of protein amounts: comparison of two-dimensional electrophoresis patterns of leaf sheaths of two maize lines (Zea mays L.) and their hybrids

Published online by Cambridge University Press:  14 April 2009

A. Leonardi
Affiliation:
Laboratoire de Génétique des Systèmes Végétaux, La Ferme du Moulon, 91190 Gif-sur-Yvette, France
C. Damerval
Affiliation:
Laboratoire de Génétique des Systèmes Végétaux, La Ferme du Moulon, 91190 Gif-sur-Yvette, France
D. de Vienne
Affiliation:
Laboratoire de Génétique des Systèmes Végétaux, La Ferme du Moulon, 91190 Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Denatured total proteins of two maize lines and their reciprocal F1 hybrids were analysed by two-dimensional electrophoresis. Quantitative (spot more or less intense) and qualitative (presence or absence of spots) differences exist between the lines, and correspond to 11% of the total reproducible spots. Non-additive effects on spot intensities were found in the hybrids, which display spots similar to the more intense parental spot for 11% of varying spots. This may correspond to dominance for regulatory systems controlling the protein amounts. Such interactions contrast with additivity classically described for enzymes or DNA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Abraham, I. & Doane, W. W. (1978). Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 75, 44464450.Google Scholar
Allendorf, F. W., Knudsen, K. L. & Phelps, S. R. (1982). Identification of a gene regulating the tissue expression of a phosphoglucomutase locus in Rainbow trout. Genetics 102, 259268.Google Scholar
Anderson, N. L., Nance, S. L., Tollaksen, S. L., Giere, F. A. & Anderson, N. G. (1985). Quantitative reproducibility of measurements from coomassie blue stained 2-D gels: analysis of mouse liver protein patterns and comparison of BALB C and C57 strains. Electrophoresis 6, 592599.Google Scholar
Bahrman, N., de Vienne, D., Thiellement, H. & Hofmann, J. P. (1985). Two-dimensional gel electrophoresis of proteins for genetic studies in Douglas Fir (Pseudotsuga menziesii). Biochemical Genetics 23, 247255.Google Scholar
de Bildering, N. & Lourtioux, A. (1976). Quelques années de phytotronique. In Etudes de biologie végétale: hommage au Professeur Chouard (ed. Jacques, R.), pp. 331341. Paris.Google Scholar
Bernstine, E. G. & Koh, C. (1980). A cis-active regulatory gene in the mouse: direct demonstration of cis-active control of the rate of enzyme subunit synthesis. Proceedings of the National Academy of Sciences, USA 77, 41934195.CrossRefGoogle ScholarPubMed
Bewley, G. C. & Laurie-Ahlberg, C. C. (1984). Genetic variation affecting the expression of catalase in Drosophila melanogaster: correlations with rate of enzyme synthesis and degradation. Genetics 106, 435448.CrossRefGoogle ScholarPubMed
Chandlee, J. M. & Scandalios, J. G. (1984). Regulation of Cat 1 gene expression in the scutellum of maize during early sporophytic development. Proceedings of the National Academy of Sciences, USA 81, 49034907.Google Scholar
Colas des Francs, C. & Thiellement, H. (1985). Chromosomal localization of structural genes and regulators in wheat by 2D electrophoresis of ditelosomic lines. Theoretical and Applied Genetics 71, 3138.Google Scholar
Damerval, C., de Vienne, D., Zivy, M. & Thiellement, H. (1986). Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7, 5254.Google Scholar
Damerval, C., Le Guilloux, M., Blaisonneau, J. & de Vienne, D. (1987). Simplification of the Heukeshoven and Dernick's silver staining of proteins, Electrophoresis (in the Press).CrossRefGoogle Scholar
Damerval, C., Hebert, Y. & de Vienne, D. (1987). Is the polymorphism of protein amounts related to phenotypic variability? A comparison of two-dimensional electrophoresis data with morphological traits in maize. Theoretical and Applied Genetics (in the Press).Google Scholar
Dizik, M. & Elliott, R. W. (1978). A second gene affecting the sialylation of lysosomal α-mannosidase in mouse liver. Biochemical Genetics 16, 247260.CrossRefGoogle ScholarPubMed
Garrels, J. I. (1979). Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. Journal of Biological Chemistry 254, 79617977.Google Scholar
Gibson, J. B., Wilks, A. V., Cao, A. & Freeth, A. L. (1986). Dominance for sn-glycerol-3-phosphate dehydrogenase activity in Drosophila melanogaster: evidence for differential allelic expression mediated via a trans-acting effect. Heredity 56, 227236.CrossRefGoogle Scholar
Granier, F. & de Vienne, D. (1986). Silver staining of proteins: standardized procedure for two-dimensional gels bound to polyester sheets. Analytical Biochemistry 155, 4550.Google Scholar
Heukeshoven, J. & Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6, 103112.Google Scholar
King, J. J. & McDonald, J. F. (1983). Genetic localization and biochemical characterization of a trans-acting regulatory effect in Drosophila. Genetics 105, 5569.CrossRefGoogle ScholarPubMed
Klose, J. (1982). Genetic variability of soluble proteins studied by two-dimensional electrophoresis on different inbred mouse strains and on different mouse organs. Journal of Molecular Evolution 18, 315328.Google Scholar
Klose, J. & Feller, M. (1981). Genetic variability of proteins from plasma membranes and cytosols of mouse organs. Biochemical Genetics 19, 859870.Google Scholar
Lalley, P. A. & Shows, T. B. (1977). Lysosomal acid phosphatase deficiency: liver specific variant in the mouse. Genetics 87, 305317.CrossRefGoogle ScholarPubMed
Laurie-Ahlberg, C. C., Maroni, G., Bewley, G. C., Lucchesi, J. C. & Weir, B. S. (1980). Quantitative genetic variation of enzyme activities in structural populations of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 77, 10731077.Google Scholar
Laurie-Ahlberg, C. C., Wilton, A. N., Curtsinger, J. W. & Emigh, T. H. (1982). Naturally occurring enzyme activity variation in Drosophila melanogaster. I. Sources of variation for 23 enzymes. Genetics 102, 191206.Google Scholar
McDonald, J. F. & Ayala, F. J. (1978). Genetic and biochemical basis of enzyme activity variation in natural populations. I. Alcohol dehydrogenase in Drosophila melanogaster. Genetics 89, 371388.CrossRefGoogle ScholarPubMed
McIntyre, R. J. (1982). Regulatory genes and adaptation. Past, present and future. Evolutionary Biology 15, 247285.Google Scholar
Maroni, G. & Laurie-Ahlberg, C. C. (1983). Genetic control of ADH expression in Drosophila melanogaster. Genetics 105, 921933.Google Scholar
O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 40074021.CrossRefGoogle ScholarPubMed
Paigen, K. (1979). Acid hydrolases as models of genetic control. Annual Review of Genetics 13, 417466.Google Scholar
Rawls, J. M. Jr & Lucchesi, J. C. (1974). Regulation of enzyme activities in Drosophila. I. The detection of regulatory loci by gene dosage responses. Genetical Research 24, 5972.Google Scholar
Sano, Y. (1984). Differential regulation of waxy gene expression in rice endosperm. Theoretical and Applied Genetics 68, 467473.Google Scholar
Scandalios, J. G. & Baum, J. A. (1982). Regulatory gene variation in higher plants. Advances in Genetics 21, 347370.CrossRefGoogle Scholar
Scandalios, J. G., Chang, D. Y., McMillin, D. E., Tsaftaris, A. S. & Moll, R. M. (1980). Genetic regulation of the catalase development program in maize scutellum: identification of a temporal regulatory gene. Proceedings of the National Academy of Sciences, USA 77, 53605364.Google Scholar
Shaffer, J. B. & Bewley, G. C. (1983). Genetic determination of sn-glycerol 3-phosphate dehydrogenase synthesis in Drosophila melanogaster. Journal of Biological Chemistry 258, 1002710033.Google Scholar
Thiellement, H., Bahrman, N. & Colas des Francs, C. (1986). Regulatory effects of homeologous chromosome arms on wheat proteins at two developmental stages. Theoretical and Applied Genetics 73: 246251.Google Scholar
Zivy, M. (1986). Influence des ampholytes sur la révélation des protéines au nitrate d'argent. In Recent Progress in Two-dimensional Electrophoresis (ed. Galteau, M. M. and Siest, G.), pp. 6972. Nancy: Presses Universitaires.Google Scholar
Zivy, M., Thiellement, H., de Vienne, D. & Hofmann, J. P. (1983). Study on nuclear and cytoplasmic genome expression in wheat by two-dimensional gel electrophoresis. 1. First results on 18 alloplasmic lines. Theoretical and Applied Genetics 66, 17.Google Scholar
Zivy, M., Thiellement, H., de Vienne, D. & Hofmann, J. P. (1984). Study on nuclear and cytoplasmic genome expression in wheat by two-dimensional electrophoresis. 2. Genetic differences between two lines and two groups of cytoplasms at five developmental stages or organs. Theoretical Applied and Genetics 68, 335345.CrossRefGoogle ScholarPubMed