Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-21T12:07:08.105Z Has data issue: false hasContentIssue false

Inheritance of a meiosis I error expressed in mouse oocytes and modulated by a maternal factor

Published online by Cambridge University Press:  14 April 2009

Friedrich Beermann
Affiliation:
Institute of Human Genetics, University of Göttingen, Gosslerstrasse 12d, D-3400 Göttingen, FRG
Jutta Jenderny
Affiliation:
Institute of Human Genetics, University of Göttingen, Gosslerstrasse 12d, D-3400 Göttingen, FRG
Edith Hummler
Affiliation:
Institute of Human Genetics, University of Göttingen, Gosslerstrasse 12d, D-3400 Göttingen, FRG
Ingo Hansmann
Affiliation:
Institute of Human Genetics, University of Göttingen, Gosslerstrasse 12d, D-3400 Göttingen, FRG

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

NMRI/Han mice ovulate significant numbers of diploid oocytes after gonadotrophin stimulation, most of them arrested at metaphase I. In contrast, females from other mouse strains ovulate only oocytes having completed meiosis I. We investigated the heritability of the trait Dipl I by analysing F1 hybrid females from crosses between the sensitive NMRI/Han stock and two mouse strains (C3H/HeHan and BALB/c) considered as non-sensitive, and females from backcrosses to NMRI/Han males (only crosses with C3H/HeHan). The results show (1) that the trait Dipl I is inheritable; (2) that an X-chromosomal (location proximally from the X–Y pairing region) or autosomal recessive mode of inheritance is excluded; and (3) that the expression of the trait, measured as frequency of diploidy, is modulated by a maternally transmitted factor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Baker, B. S., Carpenter, A. T. C., Esposito, M. S., Esposito, R. E. & Sandler, L. (1976). The genetical control of meiosis. Annual Review of Genetics 10, 53134.CrossRefGoogle ScholarPubMed
Bartels, I., Jenderny, J. & Hansmann, I. (1984). Control of meiosis by somatic cells in mice: inheritance of the meiosis I error ‘diploidy’ and nondisjunction in sensitive NMRI/Han oocytes ovulated from chimaeras. Cell Differentiation 15, 189194.CrossRefGoogle Scholar
Beermann, F. & Hansmann, I. (1986). Follicular maturation, luteinization and first meiotic division in oocytes after inhibiting mitochondrial function in mice with chloramphenicol. Mutation Research 160, 4754.CrossRefGoogle ScholarPubMed
Beermann, F., Franke, U. & Hansmann, I. (1986). High susceptibility for diploidy in ovulated oocytes from XO mice. Human Genetics 72, 323326.CrossRefGoogle ScholarPubMed
Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondrial DNA. Cell 26, 167180.CrossRefGoogle ScholarPubMed
Brook, J. D. (1983). X-chromosome segregation, maternal age and aneuploidy in the XO mouse. Genetical Research 41, 8595.CrossRefGoogle ScholarPubMed
Burgoyne, P. S. & Baker, T. G. (1983). Meiotic pairing and gametogenic failure. In Controlling Events in Meiosis (ed. Evans, C. W. and Dickinson, H. G.), pp. 349362. Cambridge: Company of Biologists.Google Scholar
Cascio, S. M. & Wassarman, P. M. (1981). Program of early development in the mammal: synthesis of mitochondrial proteins during oogenesis and early embryogenesis in the mouse. Developmental Biology 83, 166172.CrossRefGoogle ScholarPubMed
Coffin, J. (1984). Endogenous viruses. In RNA Tumor Viruses, Molecular Biology of Tumor Viruses, 2nd edn, vol. 1 (text), (ed. Weiss, R.Teich, N., Varmus, H. and Coffin, J.), pp. 11091203. Cold Spring Harbor Laboratory.Google Scholar
Ferris, S. D., Ritte, U., Fischer Lindahl, K., Prager, E. M. & Wilson, A. C. (1983). Unusual type of mitochondrial DNA in mice lacking a maternally transmitted antigen. Nucleic Acids Research 11, 29172926.Google ScholarPubMed
Fischer Lindahl, K. & Hausmann, B. (1983). Cytoplasmic inheritance of a cell surface antigen in the mouse. Genetics 103, 483494.CrossRefGoogle Scholar
Hansmann, I. & El-Nahass, E. (1979). Incidence of nondisjunction in mouse oocytes. Cytogenetics and Cell Genetics 24, 115121.CrossRefGoogle ScholarPubMed
Hansmann, I., Jenderny, J. & Probeck, H. D. (1983). Low doses of X-rays decrease the risk of diploidy in mouse oocytes. Mutation Research 109, 99110.CrossRefGoogle ScholarPubMed
Hansmann, I., Bartels, I., Beermann, F., Caspari, D., Hummler, E. & Theuring, F. (1985). Mechanisms of nondisjunction: facts and perspectives. In Aneuploidy: Etiology and Mechanisms (ed. Dellarco, V. L.Voytek, P. E.Hollaender, A.Brinkley, B. R.Hook, E. B. & Moses, M. J.), pp. 417432. New York: Plenum Press.CrossRefGoogle Scholar
Hecht, N. B., Liem, H., Kleene, K. C., Distel, R. J. & Shuk-Mei, H. (1984). Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA. Developmental Biology 102, 452461.CrossRefGoogle ScholarPubMed
Heston, W. E. (1948). Genetics of cancer. Advances in Genetics 2, 99125.CrossRefGoogle Scholar
Hyttel, P., Callesen, H. & Greve, T. (1986). Ultrastructural features of preovulatory oocyte maturation in superovulated cattle. Journal of Reproduction and Fertility 76, 645656.CrossRefGoogle ScholarPubMed
Keitges, E. A., Rivest, M., Siniscalco, M. & Gartler, S. M. (1985). X-linkage of steroid sulphatase in the mouse is evidence for a functional Y-linked allele. Nature 315, 226227.CrossRefGoogle ScholarPubMed
Lansman, R. A., Avise, J. C. & Huettel, M. D. (1983). Critical experimental test of the possibility of ‘paternal leakage’ of mitochondrial DNA. Proceedings of the National Academy of Sciences (U.S.A.) 80, 19691971.CrossRefGoogle ScholarPubMed
McLaren, A. (1979). The impact of pre-fertilization events on post-fertilization development in mammals. In Maternal Effects in Development (ed. Newth, D. R. and Balls, M.), pp. 287320. Cambridge: Cambridge University Press.Google Scholar
McLaren, A., Simpson, E., Tomonari, K., Chandler, P. & Hogg, H. (1984). Male sexual differentiation in mice lacking H–Y antigen. Nature 312, 552555.CrossRefGoogle ScholarPubMed
Privalle, C. T., Crivello, J. F. & Jefcoate, C. R. (1983). Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proceedings of the National Academy of Sciences (U.S.A.) 80, 702706.CrossRefGoogle ScholarPubMed
Röhrborn, G. & Hansmann, I. (1971). Induced chromosome aberrations in unfertilized oocytes of mice. Human Genetics 13, 184198.Google ScholarPubMed
Surani, M. A. H., Barton, S. C. & Norris, M. L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548550.CrossRefGoogle ScholarPubMed
Takagi, N. & Sasaki, M. (1976). Digynic triploidy after superovulation in mice. Nature 264, 278281.CrossRefGoogle ScholarPubMed
Tanaka, T. & Strauss, J. F. III (1982). Stimulation of luteal mitochondrial cholesterol side-chain cleavage by cardiolipin. Endocrinology 110, 15921598.CrossRefGoogle ScholarPubMed
Tarkowski, A. K. (1966). An air-drying method for chromosome preparations from mouse eggs. Cytogenetics and Cell Genetics 5, 394400.CrossRefGoogle Scholar
Thomas, J. H. & Botstein, D. (1986). A gene required for the separation of chromosomes on the spindle apparatus in yeast. Cell 44, 6576.CrossRefGoogle ScholarPubMed
Van Blerkom, J. & Runner, M. N. (1984). Mitochondrial reorganization during resumption of arrested meiosis in the mouse oocyte. American Journal of Anatomy 171, 335355.CrossRefGoogle ScholarPubMed