Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T01:49:39.604Z Has data issue: false hasContentIssue false

Induction of mutations in the zebrafish with ultraviolet light

Published online by Cambridge University Press:  14 April 2009

David Jonah Grunwald
Affiliation:
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
George Streisinger
Affiliation:
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recessive lethal germline and specific locus somatic mutations were induced efficiently in the zebrafish by exposure of mature sperm to UV light. Mutagenesis of sperm yielded mosaic individuals: clones bearing novel mutations represented approximately 12–25% of the haploid germ cells and 25–50 % of the somatic tissue. Simple methods are described for the reliable identification and propagation of newly arising developmental mutations in zebrafish.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Alexander, M. L. (1954). Mutation rates at specific autosomal loci in the mature germ cells of Drosophila melanogaster. Genetics 39, 409428.CrossRefGoogle ScholarPubMed
Altus, M. S., Bernstein, S. E., Russell, E. S., Carsten, A. L. & Upton, A. C. (1971). Defect extrinsic to stem cells in spleens of Steel anemic mice. Proceedings of the Society of Experimental Biology and Medicine 138, 985988.CrossRefGoogle ScholarPubMed
Beck, J. & Rossow, P. (1974). Analysis of genetic regulatory mechanisms. Annual Review of Genetics 8, 113.Google Scholar
Berg, D. K. (1984). New neuronal growth factors. Annual Review of Neuroscience 7, 149170.CrossRefGoogle ScholarPubMed
Chakrabarti, S., Streisinger, G., Singer, F. & Walker, C. (1983). Frequency of y-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103, 109123.CrossRefGoogle Scholar
Copeland, N. G., Gilbert, D. J., Cho, B. C, Donovan, P. J., Jenkins, N. A., Cosman, D., Anderson, D., Lyman, S. D. & Williams, D. E. (1990). Mast cell growth factor maps near the Steel locus on mouse chromosome 10 and is deleted in a number of Steel alleles. Cell 63, 175183.CrossRefGoogle Scholar
DeSerres, F. J. (1980). Mutation-induction in repairdeficient strains of Neurospora. In DNA Repair and Mutagenesis in Eukaryotes (ed. Generoso, W. M.Shelby, M. D. and deSerres, F. J.), pp. 7584. New York: Plenum Press.CrossRefGoogle Scholar
Drake, J. C. (1969). Mutagenic mechanisms. Annual Review of Genetics 3, 247268.CrossRefGoogle Scholar
Eisen, J. S., Myers, P. Z. & Westerfield, M. (1986). Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature (London) 320, 269271.CrossRefGoogle ScholarPubMed
Generoso, W. M. (1969). Chemical induction of dominant lethals in female mice. Genetics 61, 461470.CrossRefGoogle ScholarPubMed
Generoso, W. M., Cain, K. T., Krishnna, M. & Huff, S. W. (1979). Repair in the egg of chemically induced genetic lesions in spermatozoa and spermatids of mice. Proceedings of the National Academy of Sciences, USA 55, 435437.CrossRefGoogle Scholar
Gerhart, J. C, Danilchik, M., Doniach, T., Roberts, S., Rowning, B. & Stewart, R. (1989). Cortical rotation of the Xenopus egg: consequences for the anterioposterior pattern of embryonic dorsal development. Development 107 (supplement), 3751.CrossRefGoogle Scholar
Godfrey, S. S. & Sussman, M. (1982). The genetics of development in Dictyostelium discoideum. Annual Review of Genetics 16, 385404.CrossRefGoogle ScholarPubMed
Greenspan, R. J. & O'Brien, M. C. (1986). Genetic analysis of mutations at the fused locus in the mouse. Proceedings of the National Academy of Sciences, USA 83, 44134417.CrossRefGoogle ScholarPubMed
Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. (1983). The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 34, 435444.CrossRefGoogle ScholarPubMed
Grunwald, D. J. & Streisinger, G. (1992). Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genetical Research 59, 103116.CrossRefGoogle ScholarPubMed
Grunwald, D. J., Kimmel, C. B., Westerfield, M., Walker, C. & Streisinger, G. (1988). A neural degeneration mutation that spares primary neurons in the zebrafish. Cellularity Biology 126, 115128.Google ScholarPubMed
Haynes, R. H. & Eckardt, F. (1980). Mathematical analysis of mutation induction kinetics. In Chemical Mutagens, Vol. 6 (ed. deSerres, F. J. and Hollaender, A.), pp. 271307. New York: Plenum Press.CrossRefGoogle Scholar
Kaiser, D. (1986). Control of multicellular development: Dictyostelium and Myxococcus. Annual Review of Genetics 20, 539566.CrossRefGoogle ScholarPubMed
Kimmel, C. B. & Warga, R. (1986). Tissue-specific cell lineages originate in the gastrula of the zebrafish. Science 231, 365368.CrossRefGoogle ScholarPubMed
Kimmel, C. B. & Warga, R. (1988). Cell lineage and Cellularity potential of cells in the zebrafish embryo. Trends in Genetics 4, 6874.CrossRefGoogle Scholar
Krieg, D. R. (1963). Ethyl methanesulfonate induced reversion of bacteriophage T4rII mutants. Genetics 48, 561580.CrossRefGoogle ScholarPubMed
Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature (London) 276, 565570.CrossRefGoogle ScholarPubMed
Maher, V. M. & McCormick, J. J. (1980). Comparison of the mutagenic effect of ultraviolet radiation and chemicals in normal and DNA-repair-deficient human cells in culture. In Chemical Mutagens, Vol. 6 (ed. deSerres, F. J. and Hollaender, A.), pp. 309329. New York: Plenum Press.CrossRefGoogle Scholar
Novick, A. & Szilard, L. (1949). Experiments on lightreactivation of ultraviolet-inactivated bacteria. Proceedings of the National Academy of Sciences, USA 35, 591600.CrossRefGoogle Scholar
Nusslein-Volhard, C. & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature (London) 287, 795801.CrossRefGoogle ScholarPubMed
Russell, L. B. (1977). Validation of the in vivo somatic mutation method in the mouse as a prescreen for germinal point mutations. Archives of Toxicology 38, 7585.CrossRefGoogle ScholarPubMed
Russell, W. L. (1951). X-ray induced mutations in mice. Cold Spring Harbor Symposia on Quantitative Biology 16, 327336.CrossRefGoogle ScholarPubMed
Searle, A. G. (1974). Mutation induction in mice. Advances in Radiation Biology 4, 131207.CrossRefGoogle Scholar
Stadler, L. J. (1954). The gene. Science 120, 811819.CrossRefGoogle ScholarPubMed
Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E. & Inouye, M. (1966). Frameshift mutations and the genetic code. Cold Spring Harbor Symposia on Quantitative Biology 31, 7784.CrossRefGoogle ScholarPubMed
Streisinger, G., Walker, C, Dower, N., Knauber, D. & Singer, F. (1981). Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature (London) 291, 293296.CrossRefGoogle Scholar
Streisinger, G., Singer, F., Walker, C, Knauber, D. & Dower, N. (1986). Segregation analyses and genecentromere distances in zebrafish. Genetics 112, 311319.CrossRefGoogle ScholarPubMed
Streisinger, G., Coale, F., Taggart, C, Walker, C. & Grunwald, D. J. (1989). Clonal origins of cells in the pigmented retina of trie zebrafish eye. Cellularity Biology 131, 6069.Google Scholar
Walker, C. & Streisinger, G. (1983). Induction of mutations by y-rays in pregonial germ cells of zebrafish embryos. Genetics 103, 125136.CrossRefGoogle Scholar