Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T01:02:19.989Z Has data issue: false hasContentIssue false

Induced expression of a Drosophila hsp70 promoter-fusion transgene is reduced after repeated heat shocks

Published online by Cambridge University Press:  14 April 2009

S. M. N. Hunt
Affiliation:
School of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
M. R. Wilkins
Affiliation:
School of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
H. W. Stokes
Affiliation:
School of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
G. E. Daggard
Affiliation:
School of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
R. Frankham*
Affiliation:
School of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Levels of transcripts produced by a heat shock protein 70 (hsp70)-antisense white transgene in Drosophila were measured after single and multiple heat shocks to determine whether the hsp70 promoter could produce sustained high levels of transgene transcripts. A single heat shock resulted in typical highly inducible levels of RNA, but the amount of antisense RNA was substantially reduced after multiple heat shocks. Endogenous hsp70 mRNA levels were also less abundant after multiple heat shocks as compared to a single heat shock. The hsp70 promoter is unsuitable for use in fusion gene constructs for long term expression studies where repeated heat shocks are required.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Basler, K. & Hafen, E. (1989). Ubiquitous expression of sevenless position-dependent specification of cell fate. Science 243, 931934.CrossRefGoogle ScholarPubMed
Bonner, J. J. (1985). Mechanism of transcriptional control during heat shock. In Changes in Eukaryotic Gene Expression in Response to Environmental Stress (ed. Atkinson, B. G. and Walden, D. B.), pp. 3151. London: Academic Press.CrossRefGoogle Scholar
Bonner, J. J.Parks, C.Parker-Thornberg, J.Mortin, M. A. & Pelham, H. R. B. (1984). The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell 37, 979991.CrossRefGoogle ScholarPubMed
Chomczynski, P. & Sacchi, N. (1987). Single step method of RNA isolation by acid guanidinium thiocyanate phenolchloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle Scholar
Claringbold, P. J. & Barker, S. F. (1961). The estimation of relative fitness of Drosophila populations. Journal of Theoretical Biology 1, 190230.CrossRefGoogle ScholarPubMed
Craig, E. A. (1985). The heat shock response. Critical Reviews in Biochemistry 18, 239280.CrossRefGoogle ScholarPubMed
DiDomenico, B. J.Bugaisky, G. E. & Lindquist, S. (1982 a). The heat shock response is self regulated at both the transcriptional and post transcriptional levels. Cell 31, 593603.CrossRefGoogle Scholar
DiDomenico, B. J.Bugaisky, G. E. & Lindquist, S. (1982 b). Heat shock and recovery are mediated by different translational mechanism. Proceedings of the National Academy of Science U.S.A. 79, 61816185.CrossRefGoogle Scholar
Dudler, R. & Travers, A. A. (1984). Upstream elements necessary for optimal function of the hsp70 promoter in transformed flies. Cell 38, 391398.CrossRefGoogle Scholar
Dura, J. M. (1981). Stage dependent synthesis of heat shock induced proteins in early embryos of Drosophila melanogaster. Molecular and General Genetics 184, 381385.CrossRefGoogle ScholarPubMed
Fourney, R. M.Miyakoshi, J.Day, R. S. & Paterson, M. C. (1988). Northern blotting: efficient RNA staining and transfer. Focus 10, 57.Google Scholar
Frankham, R.Yoo, B. H. & Sheldon, B. L. (1988). Reproductive fitness and artificial selection in animal breeding: culling on fitness prevents a decline in reproductive fitness in lines of Drosophila melanogaster selected for increased inebriation time. Theoretical and Applied Genetics 76, 909914.CrossRefGoogle ScholarPubMed
Gehring, W. J.Klemenz, R.Weber, U. & Kloter, U. (1984). Functional analysis of the white+ gene of Drosophila by P-factor-mediated transformation. EMBO Journal 3, 20772085.CrossRefGoogle Scholar
Graziosi, G.Micali, F.Marzari, R. De Cristini, F. & Savoini, A. (1980). Variability of response of early Drosophila embryos to heat shock. Journal of Experimental Zoology 214, 141145.CrossRefGoogle Scholar
Hunt, S. M. N. (1991). Use of antisense RNA to regulate white gene expression in transgenic Drosophila melanogaster. MSc Thesis. Macquarie University, Sydney, Australia.Google Scholar
Key, J. L.Kimpel, J.Vierling, E.Lin, C. Y.Nagao, R. T.Czarnecka, E. & Schoffl, F. (1985). Physiological and molecular analyses of the heat shock response in plants. In Changes in Eukaryotic Gene Expression in Response to Environmental Stress (ed. Atkinson, B. G. and Walden, D. B.), pp. 327348. London: Academic Press.CrossRefGoogle Scholar
Klemenz, R.Hultmark, D. & Gehring, W. J. (1985). Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO Journal 4, 20532060.CrossRefGoogle ScholarPubMed
Klemenz, R.Weber, U. & Gehring, W. J. (1987). The white gene as a marker in a new P element vector for gene transfer in Drosophila. Nucleic Acids Research 15, 39473959.CrossRefGoogle Scholar
Lindquist, S. (1980 a). Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Cellularity Biology 77, 463479.Google ScholarPubMed
Lindquist, S. (1980 b). Translational efficiency of heatinduced messages in D. melanogaster cells. Journal of Molecular Biology 137, 151158.CrossRefGoogle Scholar
Lindquist, S. (1986). The heat shock response. Annual Review of Biochemistry 55, 11511191.CrossRefGoogle ScholarPubMed
Lindquist, S. & DiDomenico, B. (1985). Coordinate and noncoordinate gene expression during heat shock: a model for regulation. In Changes in Eukaryotic Gene Expression in Response to Environmental Stress (ed. Atkinson, B. G. & Walden, D. B.), pp. 7190. London: Academic Press.CrossRefGoogle Scholar
Lindquist, S.McGarry, T. J. & Golic, K. (1988). Use of antisense RNA in studies of the heat-shock response. In Antisense RNA and DNA (ed. Melton, D. A.), pp. 7177. New York: Cold Spring Harbor Laboratory.Google Scholar
Lis, J. T.Simon, J. A. & Sutton, C. A. (1983). New heat shock puffs and β-galactoridase activity resulting from transformation of Drosophila with hsp70-lacZ hybrid gene. Cell 35, 403410.CrossRefGoogle Scholar
McGarry, T. J. & Lindquist, S. (1986). Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proceedings of the National Academy of Science U.S.A. 83, 399403.CrossRefGoogle ScholarPubMed
O'Hare, K.Murphy, C.Levis, R. & Rubin, G. M. (1984). DNA sequence of the white locus of Drosophila melanogaster. Journal of Molecular Biology 180, 437455.CrossRefGoogle ScholarPubMed
Pelham, H. (1987). Properties and uses of heat shock promoters. In Genetic Engineering (ed. Setlow, J. K.), pp. 2744. New York: Plenum Press.CrossRefGoogle Scholar
Petersen, R. & Lindquist, S. (1988). The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene 72, 161168.CrossRefGoogle ScholarPubMed
Petersen, R. B. & Lindquist, S. (1989). Regulation of hsp70 synthesis by messenger RNA degradation. Cell Regulation 1, 135149.CrossRefGoogle ScholarPubMed
Qian, S.Hongo, S. & Jacobs-Lorenza, M. (1988). Antisense ribosomal protein gene expression specifically disrupts oogenesis in Drosophila melanogaster. Proceedings of the National Academy of Science U.S.A. 85, 96019605.CrossRefGoogle ScholarPubMed
Reed, K. & Mann, D. A. (1985). Rapid transfer of DNA from agarose gel. Nucleic Acids Research 13, 72077221.CrossRefGoogle Scholar
Roiha, H. & Glover, D. M. (1981). Duplicated rDNA sequences of variable lengths flanking the short type I insertions in the rDNA of Drosophila melanogaster. Nucleic Acids Research 9, 55215532.CrossRefGoogle ScholarPubMed
Rougvie, A. E. & Lis, J. T. (1990). Post initiation transcriptional control in Drosophila melanogaster. Molecular and Cellular Biology 10, 60416045.Google Scholar
Rubin, G. M. & Spradling, A. C. (1983). Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Research 11, 63416351.CrossRefGoogle ScholarPubMed
Simon, J. A.Sutton, C. A.Lobell, R. B.Glaser, R. L. & Lis, J. T. (1985). Determinants of heat shock-induced chromosome puffing. Cell 40, 805817.CrossRefGoogle ScholarPubMed
Spena, A.Hain, R.Ziervogel, U.Saedler, H. & Schell, J. (1985). Construction of heat-inducible genes for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants. EMBO Journal 4, 27392743.CrossRefGoogle Scholar
Spradling, A. C. (1986). Pelement-mediated transformation. In Drosophila: a Practical Approach (ed. Roberts, D. B.), pp. 175197. Oxford: IRL Press.Google Scholar
Steller, H. & Pirrotta, V. (1984). Regulated expression of genes injected into early Drosophila embryos. EMBO Journal 3, 165173.CrossRefGoogle ScholarPubMed
Steller, H. & Pirrotta, V. (1985). Expression of the Drosophila white gene under the control of the hsp heat shock promoter. EMBO Journal 4, 37653772.CrossRefGoogle Scholar
Struhl, G. (1985). Near-reciprocal phenotypes caused by inactivation of the Drosophila segmentation gene ftz. Nature 318, 677680.CrossRefGoogle ScholarPubMed
Velazquez, J. M. & Lindquist, S. (1984). hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36, 655662.CrossRefGoogle ScholarPubMed
Velazquez, J. M.Sonoda, S.Bugaisky, G. & Lindquist, S. (1983). Is the major Drosophila heat shock protein present in cells that have not been heat shocked? Journal of Cell Biology 96, 286290.CrossRefGoogle Scholar
Xiao, H. & Lis, J. T. (1989). Heat shock and development regulation of the Drosophila melanogaster hsp83 gene. Molecular and Cellular Biology 9, 17461753.Google ScholarPubMed