Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T07:06:30.709Z Has data issue: false hasContentIssue false

Implications of the genetic divergence between European wild mice with Robertsonian translocations from the viewpoint of mitochondrial DNA

Published online by Cambridge University Press:  14 April 2009

Kazuo Moriwaki
Affiliation:
Department of Cytogenetics, National Institute of Genetics, Mishima, Shizuoka-ken, 411
Hiromichi Yonekawa
Affiliation:
Department of Biochemistry, Saitama Cancer Center Research Institute, Kitaadachi-gun, Saitama-ken, 362
Osamu Gotoh
Affiliation:
Department of Biochemistry, Saitama Cancer Center Research Institute, Kitaadachi-gun, Saitama-ken, 362
Mitsuru Minezawa
Affiliation:
Department of Variation Research, Primate Research Institute, Kyoto University, Inuyama, Aichi-ken 484, Japan.
Heinz Winking
Affiliation:
Institut für Pathologie, Medizinische Hochschule Lübeck, Ratzeburger Allee 160, D-2400 Lübeck, Federal Republic of Germany
Alfred Gropp
Affiliation:
Institut für Pathologie, Medizinische Hochschule Lübeck, Ratzeburger Allee 160, D-2400 Lübeck, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genetic divergences between the wild mouse populations with various Robertsonian translocations from the Poschiavo Valley, Yugoslavia, Milan and the Apenninies, were estimated based on the mitochondrial (mt) DNAs. The mtDNAs isolated from the liver were analysed by agarose slab-gel electrophoresis after digestion with eight kinds of restriction endonucleases: BamHI, EcoRI, HindII, HindIII, PstI, HpaI, HpaII and BgII. These preparations were further used to make restriction maps, from which sequence divergence between each Rb variation was calculated to be 0·2–2·2%. These rather larger values appear to be in conflict with the present concept that the Rb variations occurred during the last several thousand years. Both, however, might be reconciled by assuming genetic introgression of the founder with a small number of Rb translocations into other subspecies populations genetically remote and the subsequent rapid accumulation of Rb translocations unique to each population due to an unknown mechanism occurring specifically in the intersubspecies hybrids between M. m. domesticus and the other M. m. subspecies. This was the case also in a new Rb (9.15) translocation obtained from Ogasawara Islands in Japan which was the intersubspecies hybrid between M. m. molossinus and M. m. domesticus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Adolph, S. & Klein, J. (1981). Robertsonian variation in Mus musculus from Central Europe, Spain and Scotland. Journal of Heredity 72, 219221.CrossRefGoogle ScholarPubMed
Berry, R. J. (1970). The natural history of the house mouse. Field Studies 3, 219262.Google Scholar
Birsky, C. W. Jr, Maruyama, T. & Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103, 513527.CrossRefGoogle Scholar
Britton-Davidian, J., Bonhomme, F., Croset, H., Capanna, E. & Thaler, L. (1980). Varibilité génétique chez les populations de Souris (genre Mus L.) a nombre chromosique réduit. Comptes Rendus-Academie Des Sciences Paris, 290 (D), 195198.Google Scholar
Brothwell, D. (1981). The Pleistocene and Holocene archaeology of the house mouse and related species. Symposia-Zoological Society of London 47, 113.Google Scholar
Brown, W. M. & Vinograd, J. (1974). Restriction endonuclease cleavage maps of animal mitochondria DNAs. Proceedings of the National Academy of Sciences U.S.A. 71, 46174621.CrossRefGoogle Scholar
Capanna, E., Gropp, A., Winking, A., Noack, G. & Civitelli, M. -V. (1976). Robertsonian Metacentrics in the Mouse. Chromosoma 58, 341353.CrossRefGoogle ScholarPubMed
Capanna, E., Vittoria, Civitelli M. & Cristaldi, M. (1977). Chromosomal rearrangement, reproductive isolation and speciation in mammals. The case of Mus musculus. Bollettino di Zoologia 44, 213246.CrossRefGoogle Scholar
Capanna, E. & Riscassi, E. (1978). Robertsonian karyotype variability in naturai Mus musculus population in the Lombardy area of the Po valley. Bollettino di Zoologia 45, 6371.CrossRefGoogle Scholar
Chakrabarti, S. & Chakrabarti, A. (1977). Spontaneous Robertsonian fusion leading to karyotype variation in the house mouse - first report from Asia. Experimentia 33, 175177.CrossRefGoogle ScholarPubMed
Dulic, B. S. & Dunderski, Z. (1980). Distribution of karyotypes in Mus musculus Linnaeus,1758 (Rodentia, Muridae) in some regions of Yugoslavia. Biosystematika 6, 203210.Google Scholar
Engels, W. R. & Preston, C. R. (1981). Identifying P factors in Drosophila by means of chromosome breakage hotspots. Cell 26, 421428.CrossRefGoogle ScholarPubMed
Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U. & Wilson, A. C. (1983). Mitochondrial DNA evolution in mice. Genetics 105, 681721.CrossRefGoogle ScholarPubMed
Gotoh, O., Hayashi, J.-I., Yonekawa, H. & Tagashira, Y. (1979). An improved method for estimating sequence divergence between related DNAs from changes in restriction endonuclease cleavage sites. Journal of Molecular Evolution 14, 301310.CrossRefGoogle ScholarPubMed
Gropp, A., Tettenborn, L. & Leumann, E. V. (1970). Chromosomen variation vom Robertsonian Typus bei der Tabakmaus, M. poschiavinus, und ihren Hybriden. Cytogenetics 9, 923.CrossRefGoogle Scholar
Gropp, A., Winking, H., Zech, L. & Muller, H. (1972). Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 39, 265288.CrossRefGoogle ScholarPubMed
Gropp, A. & Winking, H. (1981). Robertsonian translocations: Cytology, meiosis, segregation patterns and biological consequences. In Biology of the House Mouse, pp. 141181. New York: Academic Press.Google Scholar
Gropp, A., Winking, H., Redi, C., Capanna, E., Britton-Davidian, J. & Noack, G. (1982). Robertsonian karyotype variation in wild house mice from Rhaeto-Lombardia. Cytogenetics and Cell Genetics 34, 6777.CrossRefGoogle ScholarPubMed
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster; A syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833.CrossRefGoogle ScholarPubMed
Kohne, D. F. (1970). Evolution of higher organism DNA. Quarterly Reviews of Biophysics 3, 327375.CrossRefGoogle ScholarPubMed
Von Lehmann, E. & Radbruch, A. (1977). Robertsonian translocations in Mus musculus from Sicily. Experientia 33, 10251026.CrossRefGoogle Scholar
Minezawa, M., Moriwaki, K. & Rondo, K. (1979). Geographical distribution of Hbbp alleles in the Japanese wild mouse, Mus musculus molossinus. Japanese Journal of Genetics 54, 165173.Google Scholar
Minezawa, M., Moriwaki, K. & Kondo, K. (1980). Geographical survey of protein variants in wild populations of Japanese house mouse, Mus musculus molossinus. Japanese Journal of Genetics 56, 2739.Google Scholar
Moore, J. R., Johnson, P. H., Cander, S. E. M. & Grossman, L. I. (1977). A restriction endonuclease cleavage map of mouse mitochondria DNA. Nucleic Acids Research 4, 12731289.CrossRefGoogle Scholar
Moriwaki, K., Shiroishi, T., Yonekawa, H., Miyashita, N. & Sagai, T. (1982). Genetic status of Japanese wild mice and immunological characters of their H-2 antigens. In Teratocarcinoma and Embryonic Cell Interactions, pp. 151175. Tokyo: Japan Scientific Society Press; New York: Academic Press.Google Scholar
Nei, M. (1972). Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Nevo, E. & Cleve, H. (1978). Genetic differentiation during speciation. Nature 275, 125126.CrossRefGoogle ScholarPubMed
Parker, R. C. & Watson, R. M. (1977). Restriction endonuclease cleavage maps of rat and mouse mitochondrial DNAs. Nucleic Acids Research 4, 12911299.CrossRefGoogle ScholarPubMed
Robinson, T. J. (1978). Preliminary report of a Robertsonian translocation in an isolated feral Mus musculus population. Mammalian Chromosome Newsletter 19 (3), 8485.Google Scholar
Sage, R. D. (1981). Wild Mice. In Mouse in Biomedical Research, vol. 1, pp. 3990. New York: Academic Press.Google Scholar
Schwarz, E. & Schwarz, H. K. (1943). The wild and commensal stocks of the house mouse Mus musculus Linnaeus. Journal of Mammalogy 24, 5972.CrossRefGoogle Scholar
Selander, R. K., Hunt, W. G. & Yang, S. Y. (1969). Protein polymorphism and genie heterozygosity in two European subspecies of the house mouse. Evolution 23, 379390.CrossRefGoogle Scholar
Sokal, R. R. & Michener, C. D. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin 38, 14091438.Google Scholar
Thaler, L., Bonhomme, F. & Britton-Davidian, J. (1981). Processes of speciation and semi-speciation in the house mouse. In Biology of the House Mouse, pp. 2741. New York: Academic Press.Google Scholar
Thompson, J. N. & Woodruff, R. C. (1978). Mutator genes - pacemakers of evolution. Nature 274, 317321.CrossRefGoogle ScholarPubMed
White, M. J. D. (1968). Models of speciation. Science 159, 10651070.CrossRefGoogle ScholarPubMed
Winking, H., Gropp, A., Noack, G. & Capanna, E. (1977). Robertsonian fusion metacentrics. Mouse News Letter 57, 2628.Google Scholar
Winking, H., Dulic, B. & Gropp, A. (1979). Arm composition of new Robertsonian chromosomes in feral mice. Mouse News Letter 60, 55.Google Scholar
Winking, H., Nielsen, K. & Gropp, A. (1980). Variable positions of NORs in Mus musculus. Cytogenetics and Cell Genetics 26, 158164.CrossRefGoogle ScholarPubMed
Yonekawa, H., Gotoh, O., Motohashi, J., Hayashi, J.-I. & Tagashiha, Y. (1978). Positioning of the AT-rich regions in rat mistochondrial DNA by electron microscopy and analysis of the hysteresis of denaturation. Biochimica et Biophysica. Acta 251, 510519.CrossRefGoogle Scholar
Yonekawa, H., Moriwaki, K., Gotoh, O., Watanabe, J., Hayashi, J.-I., Miyashita, N., Petras, M. L. & Tagashiha, Y. (1980). Relationship between laboratory mice and the subspecies Mus musculus domesticus based on restriction endonuclease cleavage patterns of mitochondrial DNA. Japanese Journal of Genetics 55, 289296.Google Scholar
Yonekawa, H., Moriwaki, K., Gotoh, O., Hayashi, J.-I., Watanabe, J., Miyashita, N., Petras, M. L. & Tagashira, Y. (1981). Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA. Genetics 98, 801816.CrossRefGoogle ScholarPubMed
Yonekawa, H., Moriwaki, K., Gotoh, O., Miyashita, N., Migita, S., Bonhomme, F., Hjorth, J. P., Petras, M. L. & Tagashiha, Y. (1982). Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22, 222226.CrossRefGoogle ScholarPubMed
Yoshida, M. C., Ikeuchi, T. & Sasaki, M. (1975). Differentia! staining of parental chromosomes in interspecific cell hybrids with a combined quinacrine and 33258 Hoechst. Proceedings of the Japan Academy 51, 184187.CrossRefGoogle Scholar