Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T18:50:06.262Z Has data issue: false hasContentIssue false

Immunological analysis of incompatibility (S) proteins and of cross-reacting material in a self-compatible mutant of Oenothera organensis

Published online by Cambridge University Press:  14 April 2009

Y. L. A. Mäkinen
Affiliation:
Department of Botany, University College, London
D. Lewis
Affiliation:
Department of Botany, University College, London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Proteins of pollen of Oenothera organensis from heterozygous S2S3, S2S6, S3S6 and S4S6 and homozygous S6S6 genotypes produce characteristic precipitation lines in agar-gel plates against antisera prepared from the pollen. The maximum number of precipitation lines was three, and with some genotypes only one line was formed. The lines were characteristic of the different S alleles, but there was a strong cross-reaction between S4 pollen and S6 antiserum. The S protein diffused out from intact pollen grains as readily as from macerated pollen indicating that the normal site of action of the S protein, when the pollen tubes are growing down the style, is near the surface of the pollen tube. The self-compatible mutant S6′S6 in which the S6′ allele has lost the ability to produce an active pollen S protein, has a protein which cross-reacts strongly with S6 antiserum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

References

REFERENCES

East, E. M. (1929). Self sterility. Bibliogr. Genet. 5, 331370.Google Scholar
Feintberg, J. G. (1956). Agar clarification. Nature, Lond., 178, 1406.CrossRefGoogle Scholar
Feinberg, J. G. (1957). Identification, discrimination and quantification in Ouchterlony gel plates. Int. Arch. Allergy, 2, 129152.CrossRefGoogle Scholar
Feinberg, J. G. (1958). Specific titration of biological solutions in agar gel plates. 4th Int. Congr. Biol. Stand, Brussels, pp. 194221.Google Scholar
Lewis, D. & La Cour, L. F. (1944). Collection of pollen and artificial wind pollination. Nature, Lond., 153, 167.CrossRefGoogle Scholar
Lewis, D. (1949). Incompatibility in flowering plants. Biol. Rev. 24, 472–96.CrossRefGoogle ScholarPubMed
Lewis, D. (1952). Serological reactions of pollen incompatibility substances. Proc. roy. Soc. B, 140, 127135.Google ScholarPubMed
Lewis, D. (1960). Genetic control of specificity and activity of the S antigen in plants. Proc. Roy. Soc. B., 151, 468477.Google Scholar
Lewis, D. & Crowe, L. K. (1958). Unilateral interspecific incompatibility in flowering plants. Heredity, 12, 233256.CrossRefGoogle Scholar
Linskens, H. F. (1958). Zur Frage der Enstehung der Abwehr-Körper bei der Inkompati-bilitäts-reaktion von Petunia I. Ber. dtsch. bot. Ges. 71, 310.Google Scholar
Linskens, H. F. (1960). Zur Frage der Enstehung der Abwehr-Körper bei der Inkompati-bilitäts reaktion von Petunia III. Z. Bot. 48, 126135.Google Scholar
Ouchterlony, O. (1949). Antigen-antibody reactions in gels. Acta path. microbiol. 26, 507515.CrossRefGoogle ScholarPubMed
Straub, J. (1947). Zur Entwicklungsphyiologie der Sebststerilät von Petunia II Das Prinzif des Hemmungsmechanismus. Z. Naturf. 2b, 433444.CrossRefGoogle Scholar
Suskind, S. R., Yanofsky, C. & Bonner, D. M. (1955). Allelic strains of Neurospora lacking tryptophan synthetase: a preliminary immunochemical characterization. Proc. nat. Acad. Sci., Wash., 41, 577582.CrossRefGoogle ScholarPubMed