Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:18:20.289Z Has data issue: false hasContentIssue false

The homoeologous relationships of rye chromosomes 4R and 7R with wheat chromosomes

Published online by Cambridge University Press:  14 April 2009

O. L. Koller
Affiliation:
Technische Universität München, Institut für Pflanzenbau und Pflanzenzüchtung, 805 Freising-Weihenstephan, Federal Republic of Germany
F. J. Zeller
Affiliation:
Technische Universität München, Institut für Pflanzenbau und Pflanzenzüchtung, 805 Freising-Weihenstephan, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By means of rye chromosome CR from Imperial added to Chinese Spring wheat the alien substitutions 4A/CR, 4A/CRS, 4B/CR, 4D/CR, 4D/CRS, 7A/CRL, 7B/CR, 7B/CRL, 7D/CR and 7D/CRL were isolated. Substitutions 4A/CRS and 4D/CRS had a better fertility and vegetative vigour than the corresponding substitutions with the complete chromosome CR. In substitutions the entire chromosome CR did not compensate for the absence of wheat chromosomes of group 7, whereas the substitutions 7A/CRL, 7B/CRL and 7D/CRL were more fertile than the corresponding nullisomics 7A, 7B and 7D. It was shown that the short arm of CR is homoeologous to wheat telosomes 4Aα, 4BL and 4DS, whereas most of the long arm of CR is homoeologous to the wheat arms 7AS, 7BS and 7DS. Rye chromosome CR is designated 4R. Only three substitutions with rye chromosome DR were produced. The fertility of substitutions 7A/DR and 7B/DR were considerably lower than that of nulli-7A and nulli-7B. The 4B/DR substitution was sterile. Rye chromosome DR is believed to be a double interchanged chromosome in comparison to the corresponding Secale montanum chromosomes. Rye chromosome DR is designated 7R. On the basis of substitution ability of CR and DR and several homoeologous gene loci on these chromosomes an evolutionary scheme for the derivation of the Secale cereale genome from Secale montanum is outlined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Acosta, C. A. (1961). The transfer of stem rust resistance from rye to wheat. Ph.D. thesis, University of Missouri. 56 pp.Google Scholar
Bhattacharyya, N. K. & Jenkins, B. C. (1960). Karyotype analysis and chromosome designations for Secale cereale L. ‘Dakold’. Canadian Journal of Genetics and Cytology 2, 268277.CrossRefGoogle Scholar
Bernard, M. (1976). Étude des caractéristiques cytologiques, morphologiques et agronomiques de six lignées d'addition blé-seigle. Annales de I'Amélioration des Plantes 26, 6791.Google Scholar
Brandes, D. (1975). Nicht-homoeologe Substitutionen im D-Genom von ‘Chinese Spring’ durch das SAT-Chromosom von ‘Petkuser Sommerroggen’. Dr.agr. dissertation, University of Göttingen, 56 pp.Google Scholar
Darvey, N. L. (1973). Genetics of seed shrivelling in wheat and triticale. Proceedings of the Fourth International Wheat Genetics Symposium, pp. 155159.Google Scholar
Dvořák, J. & Knott, D. R. (1974). Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Canadian Journal of Genetics and Cytology 16, 399417.CrossRefGoogle Scholar
Evans, L. E. & Jenkins, B. C. (1960). Individual Secale cereale chromosome additions to Triticum aestivum. I. The addition of individual ‘Dakold’ fall rye chromosomes to ‘Kharkov’ winter wheat and their subsequent identification. Canadian Journal of Genetics and Cytology 2, 205215.CrossRefGoogle Scholar
Hart, G. E. (1970). Evidence for triplicate genes for alcohol dehydrogenase in hexaploid wheat. Proceedings of the National Academy of Sciences, U.S.A. 66, 11361141.CrossRefGoogle ScholarPubMed
Hart, G. E. (1973). Homoeologous gene evolution in hexaploid wheat. Proceedings of the Fourth International Wheat Genetics Symposium, pp. 805810Google Scholar
Heemert, C.van & Sybenga, J. (1972). Identification of the three chromosomes involved in the translocations which structurally differentiate the genome of Secale cereale L. from those of Secale montanum Guss. and Secale vavilovii Grossh. Genetica 43, 387393.CrossRefGoogle Scholar
Heneen, W. K. (1962). Chromosome morphology in inbred rye. Hereditas 48, 182200.CrossRefGoogle Scholar
Irani, B. N. & Bhatia, C. R. (1972). Chromosomal location of alcohol dehydrogenase gene(s) in rye, using wheat–rye addition lines. Genetica 43, 195200.CrossRefGoogle Scholar
Jenkins, B. C. (1963). Secale additions and substitutions to common wheat. Proceedings of the Second International Wheat Genetics Symposium, pp. 301312. Hereditas, suppl., vol. 2.Google Scholar
Joudrier, M. P. & Cauderon, Y. (1976). Localisation chromosomique de génes contrôlant la synthèse de certains constituants β-amylasique du grain de Blé tendre. Comptes Rendus de l'Académie des Sciences D 282, 115118.Google Scholar
Koller, O. L. (1976). Untersuchungen zur Homoeologie translozierter Roggenchromosomen. Dr.agr. dissertation, Technical University of Munich, pp. 125.Google Scholar
Law, C. N. (1966). The location of genetic factors affecting a quantitative character in wheat. Genetics 53, 487498.CrossRefGoogle ScholarPubMed
McIntosh, R. A. (1973). A catalogue of gene symbols for wheat. Proceedings of the Fourth International Wheat Genetics Symposium, pp. 893937.Google Scholar
O'Mara, J. G. (1946). The substitution of a specific Secale cereale chromosome for a specific Triticum vulgare chromosome. Records of the Genetics Society of America 15, 6263.Google Scholar
Price, S. (1955). Irradiation and interspecific hybridization in Secale. Genetics 40, 651667.CrossRefGoogle ScholarPubMed
Rao, P. M. V. (1875). Homoeologous relationship of Imperial rye chromosome C with wheat chromosome 4A. Cereal Research Communications 3 (2), 103109.Google Scholar
Reimann-Philipp, R. & Rohde, H. (1968). Die eytologische Identifizierung der genetisch unterschiedlichen Gruppen von Artbastarden in den späteren Generationen der Kreuzung Secale cereale × Secale montanum in ihrer Bedeutung für die Züchtung eines perennierenden Kulturroggens. Zeitschrift für Pflanzenzüchtung 60, 212218.Google Scholar
Riley, R. (1955). The cytogenetics of the differences between some Secale species. Journal of Agricultural Science 46, 377383.CrossRefGoogle Scholar
Riley, R. (1965). Cytogenetics and plant breeding. Proceedings of the Eleventh International Congress of Genetics, Genetics Today 3, 681688.Google Scholar
Riley, R. & Chapman, V. (1958). The production and phenotypes of wheat–rye chromosome addition lines. Heredity 12, 301315.CrossRefGoogle Scholar
Rowland, G. G. & Kerber, E. R. (1974). Telocentric mapping in hexaploid wheat of genes for leaf resistance and other characters derived from Aegilops squarrosa. Canadian Journal of Genetics and Cytology 16, 137144.CrossRefGoogle Scholar
Sears, E. R. (1968). Relationships of chromosomes 2A, 2B and 2D with their rye homeologue. Proceedings of the Third International Wheat Genetics Symposium, pp. 5361.Google Scholar
Singh, R. J. & Röbbelen, G. (1976). Giemsa banding technique reveals deletions within rye chromosomes in addition lines. Zeitschrift für Pflanzenzüchtung 76, 1118.Google Scholar
Stütz, H. C. (1957). A cytogenetic analysis of the hybrid Secale cereale L. × Secale montanum Guss. and its progeny. Genetics 42, 199221.CrossRefGoogle ScholarPubMed
Sybenga, J. & Wolters, A. H. G. (1972). The classification of the chromosomes of rye (Secale cereale L.): A translocation tester set. Genetica 43, 453464.CrossRefGoogle Scholar
Tang, K. S. & Hart, G. E. (1975). Use of isozymes as chromosome markers in wheat–rye addition lines and in triticale. Genetical Research 26, 187201.CrossRefGoogle Scholar
Zeller, F. J. & Fischbeck, G. (1971). Cytologische Untersuchungen zur Identifizierung des Fremdchromosoms in der Weizensorte Zorba (W 565). Zeitschrift für Pflanzenzüchtung 66, 260265.Google Scholar