Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:13:53.893Z Has data issue: false hasContentIssue false

High genetic variability under the balance between symmetric mutation and fluctuating stabilizing selection

Published online by Cambridge University Press:  14 April 2009

Alexey S. Kondrashov*
Affiliation:
Section of Ecology and Systematics, Cornell University, Ithaca, NY 14853, USA
Lev Yu. Yampolsky
Affiliation:
Section of Ecology and Systematics, Cornell University, Ithaca, NY 14853, USA
*
*Corresponding author. Telephone: +1(607) 254-4221. Fax: + 1(607) 255-8088. e-mail: [email protected].
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have studied variability maintained in a quantitative trait by the balance between symmetric mutation and direct stabilizing selection with a fluctuating optimum. Using a simulational computer model, we have found that wide fluctuations, such that the range of the optimum changes exceeds the width of the fitness curve, increase the trait variance, often by two or three orders of magnitude, over its value under constant selection. This happens because such fluctuations cause frequent allele substitutions at the loci that control the trait. At any particular moment the variance is increased mostly due to one or several loci where more than one allele is currently common. The data on fluctuating selection in nature are reviewed

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Barton, N. H., (1986). The maintenance of polygenic variation through a balance between mutation and stabilizing selection. Genetical Research 47, 209216.CrossRefGoogle ScholarPubMed
Barton, N. H., (1989). The divergence of a polygenic system subject to stabilizing selection, mutation and drift. Genetical Research 54, 5977.CrossRefGoogle ScholarPubMed
Barton, N. H., & Turelli, M., (1987). Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genetical Research 49, 157173.CrossRefGoogle ScholarPubMed
Barton, N. H., & Turelli, M., (1989). Evolutionary quantitative genetics: how little do we know? Annual Review of Genetics 23, 337370.CrossRefGoogle ScholarPubMed
Beardmore, J. A., & Levine, L., (1963). Fitness and environmental variation. I. Study of some polymorphic populations of Drosophila pseudoobscura. Evolution 17, 121129.CrossRefGoogle Scholar
Bull, J. J., (1987). Evolution of phenotypic variance. Evolution 41, 303315.CrossRefGoogle ScholarPubMed
Burger, R., & Lande, R., (1994). On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance. Genetics 138, 901912.CrossRefGoogle ScholarPubMed
Burger, R., & Lynch, M., (1995). Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49, 151163.Google Scholar
Burger, R., Wagner, G. P., & Stettinger, F., (1989). How much heritable variation can be maintained in finite populations by mutation-selection balance? Evolution 43, 17481766.CrossRefGoogle ScholarPubMed
Carvalho, G. R., & Crisp, D. J., (1987). The clonal ecology of Daphnia magna Crustacea: Cladocera). I. Temporal changes in the clonal structure of a natural population. Journal of Animal Ecology 56, 453468.CrossRefGoogle Scholar
Charlesworth, B., (1993). Directional selection and the A. S. Kondrashov and L. Yu. Yampolsky 164 evolution of sex and recombination. Genetical Research 61, 205224.CrossRefGoogle Scholar
Ellner, S., & Hairston, N. G., Jr (1994). Role of overlapping generations in maintaining genetic variation in a fluctuating environment. American Naturalist 143, 403417.CrossRefGoogle Scholar
Endler, J. A., (1986). Natural Selection in the Wild. Princeton, NJ: Princeton University Press.Google Scholar
Gavrilets, S., (1993). Equilibria in an epistatic viability model under arbitrary strength of selection. Journal of Mathematical Biology 31, 397410.CrossRefGoogle Scholar
Gavrilets, S., & Hastings, A., (1994a). Maintenance of multilocus variability under strong stabilizing selection. Journal of Mathematical Biology 32, 287302.CrossRefGoogle ScholarPubMed
Gavrilets, S., & Hastings, A., (1994b). Dynamics of genetic variability in two-locus models of stabilizing selection. Genetics 138, 519532.CrossRefGoogle ScholarPubMed
Gillespie, J. H., & Turelli, M., (1989). Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121, 129138.CrossRefGoogle ScholarPubMed
Havel, J. E., (1985). Cyclomorphosis of Daphnia pulex spined morphs. Limnology and Oceanography 30, 853861.CrossRefGoogle Scholar
Hill, W. G., & Keightley, P. D., (1988). Interrelations of mutation, population size, artificial and natural selection. In Proceedings of the Second International Conference on Quantitative Genetics (ed. Weir, B. S., Eisen, E. J., Goodman, M. M. & Namkoong, G.), pp. 5770. Sunderland: Sinauer.Google Scholar
Houle, D., (1989). The maintenance of polygenic variation in finite populations. Evolution 43, 17671780.CrossRefGoogle ScholarPubMed
Kirzhner, V. M., Korol, A. B., Ronin, Y. I., & Nevo, E., (1994). Cyclical behavior of genotype frequencies in a two-locus population under fluctuating haploid selection. Proceedings of the National Academy of Sciences of the USA 91, 1143211436.CrossRefGoogle Scholar
Kirzhner, V. M., Korol, A. B., & Ronin, Y. I., (1995). Cyclical environmental changes as a factor maintaining genetic polymorphism. I. Two-locus haploid selection. Journal of Evolutionary Biology 8, 93120.CrossRefGoogle Scholar
Kondrashov, A. S., (1984). Rate of evolution in a changing environment. Journal of Theoretical Biology 107, 249260.CrossRefGoogle Scholar
Kondrashov, A. S., & Turelli, M., (1992). Deleterious mutations and apparent stabilizing selection in quantitative traits. Genetics 132, 603618.CrossRefGoogle Scholar
Kondrashov, A. S., & Yampolsky, L. Yu. (1996). Evolution of amphimixis and recombination under fluctuating genetic selection in one and many traits. Genetical Research6S, 165173.CrossRefGoogle Scholar
Korol, A. B., & Preygel, I. A., (1989). The increase of recombination in the multilocus system under changing environment. Genetika 25, 923931.(in Russian).Google Scholar
Lande, R., (1975). The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genetical Research 26, 221235.CrossRefGoogle Scholar
Lande, R., (1977). The influence of the mating system on the maintenance of genetic variability in polygenic characters. Genetics 86, 485498.CrossRefGoogle ScholarPubMed
Lee, L. W., (1984). Environmentally controlled phenotypic plasticity of morphology and polypeptide expression in two populations of Daphniapulex (Crustacea: Cladocera). Oecologia (Berlin) 63, 207214.CrossRefGoogle Scholar
Lewontin, R. C., (1964). The interaction of selection and linkage. II. Optimum models. Genetics 50, 757782.CrossRefGoogle ScholarPubMed
Lorenzi, R., Zonta, L. A., & Jayakar, S. D., (1989). Quantitative traits and temporally variable selection: two-locus models. Journal of Genetics 68, 2942.CrossRefGoogle Scholar
Lynch, M., (1987). The consequences of fluctuating selection for isozyme polymorphisms in Daphnia. Genetics 115, 657670.CrossRefGoogle ScholarPubMed
Mackay, T. F. C., (1980). Genetic variance, fitness, and homeostasis in varying environment: an experimental check of the theory. Evolution 34, 12191222.CrossRefGoogle ScholarPubMed
Mackay, T. F. C., (1981). Genetic variation in varying environments. Genetical Research 37, 7983.CrossRefGoogle Scholar
Smith, J. Maynard, (1978). The Evolution of Sex. Cambridge: Cambridge University Press.Google Scholar
Smith, J. Maynard, (1980). Selection for recombination in a polygenic model. Genetical Research 35, 269277.CrossRefGoogle Scholar
Smith, J. Maynard, (1988). Selection for recombination in a polygenic model: the mechanism. Genetical Research 51, 5963.CrossRefGoogle Scholar
Nei, M. & Graur, D., (1984). Extent of protein polymorphism and the neutral mutation theory. Evolutionary Biology 17, 73118.Google Scholar
Nevo, E., Beiles, A., & Ben-Shlomo, R., (1984). The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lecture Notes in Biomathematics 53, 13213.CrossRefGoogle Scholar
Parejko, K., & Dodson, S.I. (1991). The evolutionary ecology of an antipredator reaction norm: Daphnia pulex and Chaoborus americanus. Evolution 45, 16651674.CrossRefGoogle ScholarPubMed
Rutchman, D. H., (1994). Dynamics of the two-locus haploid model. Theoretical Population Biology 45, 167176.CrossRefGoogle Scholar
Scheiner, S. M., (1993). Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24, 3568.CrossRefGoogle Scholar
Slatkin, M., (1979). Frequency- and density-dependent selection on a quantitative character. Genetics 93, 755771.CrossRefGoogle ScholarPubMed
Threlkeld, S. T., (1987). Daphnia life history strategies and resource allocation patterns. Memorie dellIstituto Italiano di Idrobiologia 45, 353366.Google Scholar
Turelli, M., (1984). Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theoretical Population Biology 25, 138193.CrossRefGoogle Scholar
Turelli, M., (1988). Population genetic models for polygenic variation and evolution. In Proceedings of the Second International Conference on Quantitative Genetics (ed. Weir, B. S., Eisen, E. J., Goodman, M. M. & Namkoong, G.), pp. 601608. Sunderland: Sinauer.Google Scholar
Yampolsky, L. Yu. & Ebert, D., (1994). Variation and plasticity of biomass allocation in Daphnia. Functional Ecology 8, 435440.CrossRefGoogle Scholar
Zeng, Z.-B. & Cockerham, C. C., (1993). Mutation models and quantitative genetic variation. Genetics 133, 729736.CrossRefGoogle ScholarPubMed