Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T11:20:30.225Z Has data issue: false hasContentIssue false

Heterospecific transcription of the Escherichia coli rpoB-3 allele in Gram-negative bacteria

Published online by Cambridge University Press:  14 April 2009

Zainab Al-Doori
Affiliation:
Department of Molecular Biology, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, U.K.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

rpoB is the structural gene for the β-subunit of E. coli RNA polymerase. The rpoB-3 allele confers resistance to the antibiotic rifampicin and is unusual in being dominant to the wild-type allele. We used the plasmid pZD23, a derivative of the broad host range conjugative plasmid RP4, to introduce the rpoB-3 allele into a range of bacterial species. Species belonging to the same family as E. coli (Enterobacter aerogenes, Citrobacter freundii, Hafnia alvei møller, Klebsiella pneumoniae, Salmonella typhimurium) expressed rpoB-3 to give a rifampicin resistant phenotype; this demonstrated heterospecific transcription. The transfer of pZD23 to the non-Enterobacteriaceae species Azotobacter vinelandii and Rhizobium leguminosarum did not result in rifampicin resistance. In the former case this was due to non-expression of the rpoB-3 resistance phenotype, in the latter case the dominant resistance phenotype had been lost from pZD23. Heterospecific transcription can be used as a criterion for the investigation of genetic relatedness between bacterial species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Al-Doori, Z., Watson, M. & Scaife, J. (1982). The orientation of transfer of the plasmid RP4. Genetical Research, Cambridge 39, 99103.CrossRefGoogle ScholarPubMed
Bachmann, B. J. & Brooks Low, K. (1980). Linkage map of Escherichia coli K-12, edition 6. Microbiological Reviews 44, 156.CrossRefGoogle ScholarPubMed
Beringer, J. E. (1974). R factor transfer in Rhizobium leguminosarum. Journal of General Microbiology 84, 188198.Google ScholarPubMed
Burgess, R. R. (1976). Purification and physical properties of E. coli RNA polymerase. In RNA Polymerase (ed. Losick, R. & Chamberlin, M.), pp. 69100. Cold Spring Harbor Laboratory.Google Scholar
Clowes, R. C. & Hayes, W. (1968). Experiments in Microbial Genetics. Oxford and Edinburgh: Blackwell.Google Scholar
Cruickshank, R., Duguid, J. R., Marmion, B. P. & Swain, R. H. A. (1975). Medical Microbiology, vol. 2, 12th edition, p. 587. Edinburgh, London, New York: Churchill Livingstone.Google Scholar
Kirschbaum, J. B. & Konrad, E. B. (1973). Isolation of specialized lambda transducing phage carrying the β subunit gene for E. coli ribonucleic acid polymerase. Journal of Bacteriology 116, 517526.CrossRefGoogle ScholarPubMed
Krieg, N. R. & Holt, J. G. (1984). Bergey's Manual of Systematic Bacteriology. Baltimore and London: Williams & Wilkins.Google Scholar
Lennox, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage Pl. Virology 1, 190206.CrossRefGoogle Scholar
Lill, U. I., Behrendt, E. M. & Hartmann, G. R. (1975). Hybridization in vitro of subunits of the DNA-dependent RNA polymerase from E. coli and Micrococcus luteus. European Journal of Biochemistry 52, 411420.CrossRefGoogle Scholar
Miller, J. H. (1972). Experiments in Molecular Genetics, p. 466. Cold Spring Harbor Laboratory.Google Scholar
Nagahari, K., Koshikawa, T. & Sakaguchi, K. (1979). Expression of E. coli tryptophan operon in Rhizobium leguminosarum. Molecular and General Genetics 171, 115119.CrossRefGoogle ScholarPubMed
Pastrana, R. & Brammar, W. J. (1979). In vitro insertion of the λ attachment site into the plasmid RP4. Molecular and General Genetics 177, 163168.CrossRefGoogle ScholarPubMed
Puhler, A. & Burkhardt, H. J. (1978). Fertility inhibition in Rhizobium lupini by the resistance plasmid RP4. Molecular and General Genetics 162, 163171.CrossRefGoogle ScholarPubMed
Scaife, J. (1976). Bacterial RNA polymerases: the genetics and control of their synthesis. In RNA Polymerase (ed. Losick, R. & Chamberlin, M.), pp. 207225. Cold Spring Harbor Laboratory.Google Scholar
Sherwood, M. T. (1970). Improved synthetic medium for the growth of Rhizobium. Journal of Applied Bacteriology 33, 708713.CrossRefGoogle ScholarPubMed
Stackebrandt, E. & Woese, C. R. (1981). The evolution of prokaryotes. In Molecular and Cellular Aspects of Microbial Evolution (ed. Carlile, M. J., Collins, J. F. and Moseley, B. E. B.), pp. 131. Cambridge University Press.Google Scholar
Towner, K. J. & Vivian, A. (1976). RP4-mediated conjugation in Acinetobacter calcoaceticus. Journal of General Microbiology 93, 355360.CrossRefGoogle ScholarPubMed
Wiggs, J. L., Bush, J. W. & Chamberlin, M. J. (1979). Utilization of promoter and terminator sites on bacteriophage T7 DNA by RNA polymerases from a variety of bacterial orders. Cell 16, 97109.Google ScholarPubMed