Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T08:28:34.603Z Has data issue: false hasContentIssue false

Heterogeneity in the Sxr (sex-reversal) locus of the mouse as revealed by synthetic probes

Published online by Cambridge University Press:  14 April 2009

Jörg T. Epplen*
Affiliation:
Junior Cancer Research Unit, Max-Planck-Institut für Immunbiologie, Freiburg, Fed. Rep. of, Germany
Roland Studer
Affiliation:
Junior Cancer Research Unit, Max-Planck-Institut für Immunbiologie, Freiburg, Fed. Rep. of, Germany
Anne McLaren
Affiliation:
MRC Mammalian Development Unit, Wolfson House, University College London, United Kingdom
*
Corresponding author. Present address: Max-Planck-Institut für Psychiatric, München, Fed. Rep. of Germany.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sex-reversal mutation, Sxr and a variant form, Sxr′ have been established on the inbred C57BL/6Mcl background by repeated backcrossing to form the CB and CB′ strains, respectively. DNAs of normal XY, XX Sxr and XX Sxr′ as well as XY Sxr and XY Sxr′ carrier male mice have been digested with the restriction enzymes Hae III and Hinf I and electrophoresed. The DNAs show many common but also differing hybridization bands with synthetic oligonucleotide probes. In XY Sxr (and XY Sxr′) carrier males, the hybridization patterns of normal XY and those of XX Sxr (and XX Sxr′) males are simply superimposed. Individual differing bands can be categorized by their differential hybridization behaviour to the (GATA)4, (GACA)4, (GATA)2 GACA (GATA)2 and (GATA)3 (GACA)2 probes. In general, the hybridization patterns are regularly inherited. In addition to the predominant pattern in each strain, one additional XX Sxr and one additional XX Sxr′ hybridization pattern was observed: the additional pattern in the CB strain was transmitted (via variant XY Sxr carriers) while the secondary XX Sxr′ pattern in the CB′ strain could only be observed once. Thus ‘DNA finger printing’ with oligonucleotide probes can successfully be used to discriminate the DNAs of normal Y chromosomes, XX Sxr and XX Sxr′ variants as well as XY Sxr and XY Sxr′ carrier mice. Implications of the comparatively high unequal recombination rate involving the murine Y chromosome are discussed, as well as possible mechanisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Ali, S., Müller, C. R. & Epplen, J. T. (1986). DNA finger printing by oligonucleotide probes specific for simple repeats. Human Genetics 74, 239243.CrossRefGoogle ScholarPubMed
Arnemann, J., Epplen, J. T., Cooke, H. J., Sauermann, U., Engel, W. & Schmidtke, J. (1987). A human Y-chromosomal DNA sequence expressed in testicular tissue. Nucleic Acids Research 15, 87138724.CrossRefGoogle ScholarPubMed
Blin, N. & Stafford, D. (1976). A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Research 3, 23032308.CrossRefGoogle ScholarPubMed
Borst, P. & Greaves, D. R. (1987). Programmed gene rearrangements altering gene expression. Science 235, 658667.CrossRefGoogle ScholarPubMed
Brégégère, F. (1983). A directional process of gene conversion is expected to yield dynamic polymorphism associated with stability of alternative alleles in class I histocompatibility antigens gene family. Biochimie 65, 229237.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Evans, E. P., Burtenshaw, M. D. & Barlow, J. (1982). Male, female and intersex development in mice of identical chromosome constitution. Nature 300, 445446.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Pollard, C. E. & Hawkes, S. G. (1971). Sex-reversed mice: XX and XO males. Cytogenetics 10, 318337.CrossRefGoogle ScholarPubMed
Eicher, E. M. & Washburn, L. L. (1986). Genetic control of primary sex determination in mice. Annual Reviews of Genetics 20, 327360.CrossRefGoogle ScholarPubMed
Epplen, J. T., Cellini, A., Romero, S. & Ohno, S. (1983). An attempt to approach the molecular mechanisms of primary sex determination: W- and Y-chromosomal conserved simple repetitive DNA sequences and their differential expression in mRNA. Journal of Experimental Zoology 228, 305312.CrossRefGoogle Scholar
Epplen, J. T., McCarrey, J. R., Sutou, S. & Ohno, S. (1982). Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. Proceedings of the National Academy of Sciences, U.S.A. 79, 37983802.CrossRefGoogle ScholarPubMed
Evans, F. P., Burtenshaw, M. D. & Cattanach, B. M. (1982). Meiotic crossing-over between the X and Y chromosome of male mice carrying the sex-reversing (Sxr) factor. Nature 300, 443445.CrossRefGoogle Scholar
Harbers, K., Soriano, P., Müller, U. & Jaenisch, R. (1986). High frequency of unequal recombination in pseudoautosomal region shown by proviral insertion in transgenie mouse. Nature 324, 682685.CrossRefGoogle Scholar
Kobori, J. A., Strauss, E., Minard, K. & Hood, L. (1986). Molecular analysis of the hotspot of recombination in the murine major histocompatibility complex. Science 234, 173179.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory.Google Scholar
Matthey, R. (1953). La formule chromosomique et le problème de Ia determination sexuelle chez Ellobius lutescens Thomas (Rodentia–Muridae–Microtinae). Archiv der Julius Klaus-Stflung 28, 271279.Google Scholar
Matthey, R. (1958). Un nouveau type de détermination chromosomique du sex chez les mammifères Ellobius lutescens Th. et Microtus (Chilotus) oregoni Bachm. (Muridés–Microtinés). Experientia 14, 240241.CrossRefGoogle ScholarPubMed
MeLaren, A. & Monk, M. (1982). Fertile females produced by inactivation of an X chromosome of sex-reversed mice. Nature 300, 446448.CrossRefGoogle Scholar
McLaren, A., Simpson, E., Tomonari, K., Chandler, P. & Hogg, H. (1984). Male sexual differentiation in mice lacking H–Y antigen. Nature 312, 552555.CrossRefGoogle ScholarPubMed
Schäfer, R., Ali, S. & Epplen, J. T. (1986). The organization of the evolutionarily conserved GATA/GACA repeats in the mouse genome. Chromosoma 93, 502510.CrossRefGoogle ScholarPubMed
Schäfer, R., Böltz, E., Becker, A., Bartels, F. & Epplen, J. T. (1986). The expression of the evolutionarily conserved GATA/GACA repeats in mouse tissues. Chromosoma 93, 496501.CrossRefGoogle ScholarPubMed
Singh, L. & Jones, K. W. (1982). Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. Cell 28, 205216.CrossRefGoogle Scholar
Singh, L., Phillips, C. & Jones, K. W. (1984). The conserved nucleotide sequences of Bkm, which define Sxr in the mouse, are transcribed. Cell 36, 111120.CrossRefGoogle ScholarPubMed
Singh, L., Purdom, I. F. & Jones, K. W. (1981). Conserved sex-chromosome-associated nucleotide sequences in eukaryotes. Cold Spring Harbor Symposia on Quantitative Biology 45, 805813.CrossRefGoogle ScholarPubMed
Steinmetz, M., Uematsu, Y. & Fischer-Lindahl, K. (1987). Hotspots of homologous recombination in mammalian genomes. Trends in Genetics 3, 710.CrossRefGoogle Scholar
Tsao, S. G. S., Brunk, C. F. & Peariman, R. E. (1983). Hybridization of nucleic acids directly in agarose gels. Analytical Biochemistry 131, 365372.CrossRefGoogle ScholarPubMed
Vogel, W., Steinbach, P., Djalali, M., Mehnert, K., Ali, S. & Epplen, J. T. (1987). Chromosome No. 9 of Ellobius lutescens is the X-chromosome. Chromosoma (in press).Google Scholar
Welshons, W. J. & Russell, L. B. (1959). The Y chromosome as the bearer of male determining factors in the mouse. Proceedings of the National Academy of Sciences, U.S.A. 45, 560566.CrossRefGoogle Scholar