Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T05:35:24.427Z Has data issue: false hasContentIssue false

The genetics of tasting in mice VII. Glycine revisited, and the chromosomal location of Sac and Soa

Published online by Cambridge University Press:  14 April 2009

I. E. Lush*
Affiliation:
Department of Genetics and Biometry, University College London, 4 Stephenson Way, London NW1 2HE
J. P. Stoye
Affiliation:
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous work which appeared to show that some strains of mice taste glycine solutions as bitter has been found to be in error. The bitterness came from copper glycinate which formed in the brass drinking spouts. Taste testing with copper glycinate shows that the genetical data identifying the gene Glb are still valid. The close linkage of Glb and Rua has been confirmed. Most strains of mice prefer glycine solution to water, presumably because the glycine tastes sweet. The degree of preference for glycine is correlated with the degree of preference for other sweet substances such as saccharin or acesulfame. The gene dpa appears not to be involved.

The sweetness tasting gene Sac has been mapped to chromosome 4 at 8·1 ± 3·4 cM distal to Nppa (formerly Pnd). The bitterness tasting gene Soa is very closely linked to Prp on chromosome 6 (no recombinants among 67 backcross progeny). It is suggested that the sweetness and bitterness tasting genes have descended from a common ancestral tasting gene which existed before the tetraploidization of the genome which took place in early vertebrate evolution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Abbott, C. M., Blank, R., Eppig, J. T., Fiedorek, F. T., Frankel, W., Friedman, J. M., Huppi, K. E., Jackson, I., Steel, K., Mock, B. A., Stoye, J. & Wiseman, R. (1993). Mouse chromosome 4. Mammalian Genome 4, S58–S71.CrossRefGoogle ScholarPubMed
Azen, E. A. (1991). Linkage studies of genes for salivary proline-rich proteins and bitter taste in mouse and human. In Chemical Senses Vol. 3 Genetics of Perception and Communication (ed. Wysocki, C. J. and Kare, M. R.). New York: Marcel Dekker.Google Scholar
Azen, E. A., Davisson, M. T., Cherry, M. & Taylor, B. A. (1989). Prp (proline-rich protein) genes linked to markers Es-12 (esterase-12), Ea-10 (erythrocyte alloantigen) and loci on distal mouse chromosome 6. Genomics 5, 415422.CrossRefGoogle ScholarPubMed
Bailey, N. T. J. (1950). The influence of partial manifestation on the detection of linkage. Heredity 4, 327336.CrossRefGoogle ScholarPubMed
Capeless, C. B., Whitney, G., Gannon, K. S., Harder, D. B., Azen, E. A., Beamer, W. G. & Taylor, B. A. (1990). The sucrose octaacetate taste gene (Soa) is on distal mouse chromosome 6 and is closely linked (or identical) to salivary proline-rich protein genes (Prp). Chemical Senses 15, 559 (abstract).Google Scholar
Capeless, C. G., Whitney, G. & Azen, E. A. (1992). Chromosome mapping of Soa, a gene influencing gustatory sensitivity to sucrose octaacetate in mice. Behaviour Genetics 22, 655663.CrossRefGoogle ScholarPubMed
Dietrich, W., Katz, H., Lincoln, S. E., Shin, H.-S., Friedman, J., Dracopoli, N. C. & Lander, E. S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423427.CrossRefGoogle ScholarPubMed
Harder, D. B., Capeless, C. G., Maggio, J. C., Boughter, J. D., Gannon, K. S., Whitney, G. & Azen, E. A. (1992). Intermediate sucrose octa-acetate sensitivity suggests a third allele at mouse bitter taste locus Soa and Soa-Rua identity. Chemical Senses 17, 391401.CrossRefGoogle Scholar
Hearne, C. M., McAleer, M. A., Love, J. M., Aitmann, T. J., Cornall, R. J., Chosh, S., Knight, A. M., Prins, J-B. & Todd, J. A. (1991). Additional microsatellite markers for mouse genome mapping. Mammalian Genome 1, 273282.CrossRefGoogle ScholarPubMed
Love, J. M., Knight, A. M., McAleer, M. A. & Todd, J. A. (1990). Towards construction of a high resolution map of the mouse genome using PCR-analyzed microsatellites. Nucleic Acids Research 18, 41234130.CrossRefGoogle Scholar
Lundin, L.-G. (1979). Evolutionary conservation of large chromosomal segments reflected in mammalian gene maps. Clinical Genetics 16, 7281.CrossRefGoogle ScholarPubMed
Lundin, L.-G. (1993). Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in Man and the house mouse. Genomics 16, 119.CrossRefGoogle ScholarPubMed
Lush, I. E. (1982). The genetics of tasting in mice II. Strychnine. Chemical Senses 7, 9398.CrossRefGoogle Scholar
Lush, I. E. (1984). The genetics of tasting in mice III. Quinine. Genetical Research 44, 151160.CrossRefGoogle ScholarPubMed
Lush, I. E. (1986). The genetics of tasting in mice IV. The acetates of raffinose, galactose and β-lactose. Genetical Research 47, 117123.CrossRefGoogle ScholarPubMed
Lush, I. E. (1989). The genetics of tasting in mice VI. Saccharin, acesulfame, dulcin and sucrose. Genetical Research 53, 9599.CrossRefGoogle ScholarPubMed
Lush, I. E. (1991). The genetics of bitterness, sweetness and saltiness in strains of mice. In Chemical Senses Vol. 3, Genetics of Perception and Communication (ed. Wysocki, C. J. and Kare, M. R.). New York: Marcel Dekker.Google Scholar
Lush, I. E. & Holland, G. (1988). The genetics of tasting in mice V. Glycine and cycloheximide. Genetical Research 52, 207212.CrossRefGoogle ScholarPubMed
Lush, I. E., Hornigold, N. & Stoye, J. P. (1993). Mouse tasting genes and some speculations about homologies. Genetical Research 61, 143.Google Scholar
Lyon, M. F. & Kirby, M. C. (1993). Mouse chromosome atlas. Mouse Genome 91, 4070.Google Scholar
Morgan, W. C. (1954). A new crooked tail mutation involving distinctive pleiotropism. Journal of Genetics 5, 354373.CrossRefGoogle Scholar
Nadeau, J. H., Davisson, M. T., Doolittle, D. P., Grant, P., Hillyard, A. L., Kosowsky, M. R. & Roderick, T. H. (1992). Comparative map for mice and humans. Mammalian Genome 3, 400536.CrossRefGoogle ScholarPubMed
Ninomiya, Y.Sako, N., Katsukawa, II. & Funakoshi, M. (1991). Taste receptor mechanisms influenced by a gene on chromosome 4 in mice. In Chemical Senses Vol. 3. Genetics of Perception and Communication (ed. Wysocki, C. J. and Kare, M. R.). New York: Marcel Dekker.Google Scholar
Ohno, S. (1970). Evolution by Gene Duplication. London: Allen and Unwin.CrossRefGoogle Scholar
Siegel, S. (1956). Nonparametric statistics for the behavioural sciences. New York: McGraw-Hill.Google Scholar
Todd, J. A., Aitman, T. J., Cornall, R. J., Ghosh, S., Hall, J. R. S., Hearne, C. M., Knight, A. M., Love, J. M., McAleer, M. A., Prins, J.-B., Rodrigues, N.. Lathrop, M., Pressey, A., DeLarato, N. H., Peterson, L. B. & Wicker, L. S. (1991). Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351, 542547.CrossRefGoogle ScholarPubMed
Wiseman, R. W., Cochran, C., Dietrich, W., Lander, E. & Soderkvist, P. (1994). Allelotyping of butadiene – induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heterozygosity in regions homologous to human suppressor genes. Proceedings of the National Academy of Sciences, U.S.A. 91, 37593763.CrossRefGoogle ScholarPubMed