Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T12:20:53.715Z Has data issue: false hasContentIssue false

The genetics of Phycomyces blakesleeanus

Published online by Cambridge University Press:  14 April 2009

E. Cerdá-Olmedo
Affiliation:
Departamento de Genética, Facultad de Ciencias, Universidad de Sevilla, Spain
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The genetic relationship between germspores and parental mycelia has been investigated in crosses involving multiply-marked heterokaryons and in simple difactor crosses.

It is concluded that for each zygospore the number of different diploid nuclei undergoing meiosis is often more than one, but generally not more than two. The meiotic products divide to produce the nuclei in the usually uninucleate germspore primordia and then continue dividing to produce germspores. Unmated nuclei do not pass directly from parents to progeny.

Each germsporangium contains differing numbers of viable germspores, with an average of about 7000; different genotypes are represented by varied numbers of germspores and often expected genotypes are missing. When the results of several germsporangia are added together or germspore stocks from many germsporangia are analysed, reciprocal genotypes appear in equal numbers and reliable recombination frequencies may be calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Bergman, K., Burke, P., Cerdá-Olmedo, E., David, C. N., Delbrück, M., Foster, K. W., Goodell, E. W., Heisenberg, M., Meissner, G., Zalokar, M., Dennison, D. S. & Shropshire, W. (1969). Phycomyces. Bacteriological Reviews 33, 99157CrossRefGoogle ScholarPubMed
Blakeslee, A. F. (1904). Sexual reproduction in the Mucorineae. Proceedings of the American Academy of Arts and Sciences 40, 205319.CrossRefGoogle Scholar
Burgeff, H. (1915). Untersuchungen über Variabilität, Sexualität und Erblichkeit bei Phycomyces nitens Kuntze. ii. Flora 108, 353448Google Scholar
Burgeff, H. (1928). Variabilität, Vererbung und Mutation bei Phycomyces blakesleeanus Bgff. Zeitschrift für induktiv Abstammungs- und Vererbungslehre 49, 2694.Google Scholar
Cerdá-Olmedo, E. (1974). Phycomyces. In Handbook of Genetics, vol. 1 (ed. King, R. C.), pp. 343357. New York: Plenum Press.Google Scholar
De La Guardia, M. D., AragóN, C. M. G., Murillo, F. J. & Cerdá-Olmedo, E. (1971). A carotenogenic enzyme aggregate in Phycomyces: Evidence from quantitative complementation. Proceedings of the National Academy of Sciences, U.S.A. 68, 20122015.CrossRefGoogle Scholar
Heisenberg, M. & Cerdá-Olmedo, E. (1968). Segregation of heterokaryons in the asexual cycle of Phycomyces. Molecular and General Genetics 102, 187195.CrossRefGoogle ScholarPubMed
Hocking, D. (1967). Zygospore initiation, development and germination in Phycomyces blakesleeanus. Transactions of the British Mycological Society 50, 207220.CrossRefGoogle Scholar
Perkins, D. (1974). The manifestation of chromosome rearrangements in unordered asci of Neurospora. Genetics 77, 459489.CrossRefGoogle ScholarPubMed
Sutter, R. P. (1975). Mutations affecting sexual development in Phycomyces blakesleeanus. Proceedings of the National Academy of Sciences, U.S.A. 72, 127130.CrossRefGoogle ScholarPubMed
Swingle, D. B. (1903). Formation of the spores in the sporangia of Rhizopus nigricans and of Phycomyces nitens. United States Department of Agriculture Bureau of Plant Industries Bulletin 37, 140.Google Scholar
Van Den Ende, H. & Stegwee, D. (1971). Physiology of sex in Mucorales. The Botanical Review 37, 2236.CrossRefGoogle Scholar