Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T00:02:52.106Z Has data issue: false hasContentIssue false

The genetics of fimbriation in Escherichia coli

Published online by Cambridge University Press:  14 April 2009

G. A. Maccacaro
Affiliation:
Medical Research Council, Microbial Genetics Research Unit, Hammersmith Hospital, London, W.12
W. Hayes
Affiliation:
Medical Research Council, Microbial Genetics Research Unit, Hammersmith Hospital, London, W.12
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

(1) Fimbriated cells of E. coli K-12 are of two types. In the Fim+ type the expression of fimbriation is susceptible to reversible environmental suppression. This type gives rise to environment-stable mutants termed Fimσ+.

(2) Fimbriated cells can yield two types of non-fimbriated mutant, Fim and Fimσ, the latter arising from populations of Fimσ+ cells. Neither type reverts to the fimbriated state.

(3) Both types of fimbriated and non-fimbriated cells can be distinguished by physiological and genetic criteria.

(4) Fimbriation of both types can be transferred to non-fimbriated cells of both types, and segregates among recombinants, in crosses mediated either by transduction or sexual conjugation.

(5) The genetic control of fimbriation involves at least two determinants, for one of which a chromosomal location (fim) has been mapped.

(6) Certain anomalies of fim segregation are interpreted in terms of negative interference over relatively large regions of the bacterial chromosome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

References

REFERENCES

Anderson, T. F. (1949). In The Nature of the Bacterial Surface (eds. Miles, A. A. & Pirie, N. W.). Oxford: Blackwell. Symp. Soc. gen. Microbiol. 1, 7695.Google Scholar
Brinton, C. C. (1959). Non-flagellar appendages of bacteria. Nature, Lond., 183, 782786.CrossRefGoogle ScholarPubMed
Brinton, C. C, Buzzell, A. & Lauffer, M. A. (1954). Electrophoresis and phage susceptibility studies on a filament-producing variant of the E. coli B bacterium. Biochim. Biophys. Acta, 15, 533542.CrossRefGoogle Scholar
Constable, F. D. (1956). Fimbriae and haemagglutinating activity in strains of Bacterium cloacae. J. Path. Bact. 72, 133136.CrossRefGoogle ScholarPubMed
Duguid, J. P. & Gillies, R. R. (1957). Fimbriae and adhesive properties in dysentery bacilli. J. Path. Bact. 74, 397411.CrossRefGoogle Scholar
Duguid, J. P. & Gillies, R. R. (1958). Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J. Path. Bact. 75, 519520.Google Scholar
Duguid, J. P., Smith, I. W., Dempster, G. & Edmunds, P. N. (1955). Non-flagellar filamentous appendages (‘fimbriae’) and haemagglutinating activity in Bacterium coli. J. Path. Bact. 70, 335348.CrossRefGoogle ScholarPubMed
Hayes, W. (1953). The mechanism of genetic recombination in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 18, 7593CrossRefGoogle ScholarPubMed
Hirota, Y. & Iijima, T. (1957). Acriflavine as an effective agent for eliminating f factor in Escherichia coli K-12. Nature, Lond., 180, 655656.CrossRefGoogle ScholarPubMed
Houwink, A. L. & van Iterson, W. (1950). Electron microscopical observations on bacterial cytology: II. A study on flagellation. Biochim. Biophys. Acta, 5, 1044.CrossRefGoogle Scholar
Jacob, F., Schaeffer, P. & Wollman, E. L. (1960). Episomic elements in bacteria. In Microbial Genetics (eds. Hayes, W. & Clowes, R. C.). Cambridge University Press. Symp. Soc. gen. Microbiol. 10, 6791.Google Scholar
Maccacaro, G. A. (1955). Cell surface and fertility in Escherichia coli. Nature, Lond., 176, 125126.CrossRefGoogle ScholarPubMed
Maccacaro, G. A., Colombo, C. & Dinardo, A. (1959). Studi sulle fimbrie batteriche: I. Lo studio genetico delle fimbrie. Gior. Microbiol. 7, 120.Google Scholar
Maccacaro, G. A. & Dettori, R. (1959). Studi sulle fimbrie batteriche: IV. Metabolismo ossidativo e fermentativo in cellule fimbriate e sfimbriate. Gior. Microbiol. 7, 5268.Google Scholar
Maccacaro, G. A. & Dettori, R. (1960). Gior. Microbiol. 8, 65.Google Scholar
Maccacaro, G. A. & Hayes, W. (1961). Pairing interaction as a basis for negative interference. Genet. Res. 2, 406413.CrossRefGoogle Scholar
Maccacaro, G. A. & Turri, M. (1959). Studi sulle fimbrie batteriche: II. Osservazioni microelettroforetiche. Gior. Microbiol. 7, 2136.Google Scholar
Taylor, A. L. & Adelberg, E. A. (1960). Linkage analysis with very high frequency males of Escherichia coli. Genetics, 45, 12331243.CrossRefGoogle ScholarPubMed
Wollman, E. L. & Jacob, F. (1959). La Sexualité des Bactéries. Paris: Masson & Cie.Google Scholar
Wollman, E. L., Jacob, F. & Hayes, W. (1956). Conjugation and genetic recombination in Escherichia coli K-12. Cold Spr. Harb. Symp. quant. Biol. 21, 141162.CrossRefGoogle ScholarPubMed