Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T01:18:36.710Z Has data issue: false hasContentIssue false

Genetics and origin of a Drosophila melanogaster population recently introduced to the Seychelles

Published online by Cambridge University Press:  14 April 2009

J. R. David
Affiliation:
Laboratoire de Biologie et Génétique Evolutives du CNRS 91190 Gif-sur- Yvette, France
P. Capy
Affiliation:
Laboratoire de Biologie et Génétique Evolutives du CNRS 91190 Gif-sur- Yvette, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During an extensive survey of drosophilid fauna in 1977, D. melanogaster was not collected in the Seychelles. However, a population was found in 1981 in Victoria city, suggesting a recent introduction of this species. With respect to allozyme frequencies or ethanol tolerance, this population is almost identical to European ones and very different from those living under a similar equatorial climate on the African continent. The frequencies of rare biochemical alleles perhaps suggested that this population was founded by a small number of flies, less than ten inseminated females. For various biometrical traits, the situation was not so clear: according to the trait considered, Seychellian flies are either intermediate between European and African populations or closer to the latter. These data suggest that a few flies, recently introduced from a temperate (European?) country, built up a big population which is now on the way to adapting itself to new tropical conditions. Such an involuntary experiment should afford a unique opportunity to distinguish the respective roles of drift and adaptation in the evolution of D. melanogaster geographic races.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Allemand, R. & David, J. R. (1976). The Circadian rhythm of oviposition in Drosophila melanogaster: a genetic latitudinal cline in wild populations. Experientia 32, 1403.CrossRefGoogle Scholar
Bartlett, M. S. (1938). Further aspects of the theory of multiple regression. Proceedings of the Cambridge Philosophical Society 34, 3340.CrossRefGoogle Scholar
Berry, R. J. & Peters, J. (1975). Macquarie island house mice: a genetical isolate on a sub-antarctic island. Journal of Zoology, London 176, 375389.CrossRefGoogle Scholar
Berry, R. J., Jakobson, M. E. & Peters, J. (1978). The house mice of the Faroe islands: a study in micro-differentiation. Journal of Zoology, London 185, 7392.CrossRefGoogle Scholar
Boulétreau-Merle, J., Allemand, R., Cohet, Y. & David, J. R. (1982). Reproductive strategy in Drosophila melanogaster: significance of a genetic divergence between temperate and tropical populations. Oecologia. (In Press.)CrossRefGoogle Scholar
David, J. R. (1979). Utilization of morphological traits for the analysis of genetic variability in wild populations. Aquilo, ser. Zoology 2, 4961.Google Scholar
David, J. R. (1982). Latitudinal variability of Drosophila melanogaster: Allozyme frequencies divergence between European and Afrotropical populations. Biochemical Genetics. (In the Press.)CrossRefGoogle Scholar
David, J. R. & Bocquet, C. (1975 a). Evolution in a cosmopolitan species: genetic latitudinal clines in Drosophila melanogaster wild populations. Experientia 31, 164166.CrossRefGoogle Scholar
David, J. R. & Bouquet, C. (1975 b). Similarities and differences in latitudinal adaptation of two sibling species. Nature 257, 588590.CrossRefGoogle Scholar
David, J. R., Bocquet, C. & De Scheemaeker-Louis, M. (1977 a). Genetic latitudinal adaptation of Drosophila melanogaster: new descriminative biometrical traits between European and equatorial African populations. Genetical Research 30, 247255.CrossRefGoogle Scholar
David, J. R., Bocquet, C., Fouillet, P. & Arens, M. F. (1977 b). Tolérance génétique à l'alcool chez Drosophila: comparaison des effets de la sélection chez D. melanogaster et D. simulans. Comptes rendus de l'Académie des Sciences, Paris 285, 405408.Google Scholar
David, J. R., Bocquet, G. & Pla, E. (1976). New results on the genetic characteristics of the Far East race of Drosophila melanogaster. Genetical Research 28, 253260.CrossRefGoogle ScholarPubMed
David, J. R., Fouillet, P. & Arens, M. F. (1978). Utilisation de l'effet fondateur pour mesurer l'hétérogénéité génétique d'une population naturelle: étude de caractères quantitatifs chez Drosophila melanogaster. Comptes rendus hebdomadaires les séances de l'Académie des Sciences, Paris 286, 129132.Google Scholar
David, J. R. & Tsacas, L. (1981). Cosmopolitan, subcosmopolitan and widespread species: different strategies within the Drosophilid family (Diptera). Comptes pendu de la Société de biogéographie 57, 1126.Google Scholar
Johnston, R. F. & Selander, R. K. (1971). Evolution in the house sparrows. II. Adaptive differentiation in North American populations. Evolution 25, 128.CrossRefGoogle Scholar
Lamb, C. G. (1914). Reports of the Percy Sladen trust expedition to the Indian Ocean in 1905. XV. Diptera: Heteroneuridae, Ortalidae, Trypetidae, Sepsidae, Micropezidae, Drosophilidae, Geomyzidae, Milichidae. Transactions of the Linnean Society of London, Zoology 16, 307372.CrossRefGoogle Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge, Mass: Harvard University Press.CrossRefGoogle Scholar
Nei, M. (1972). Genetic distance between populations. American Naturalist 106, 283290.CrossRefGoogle Scholar
Sturtevant, A. H. (1919). A new species closely resembling Drosophila melanogaster. Psyche, Cambridge, Mass. 26, 153155.CrossRefGoogle Scholar
Templeton, A. R. (1980). Modes of speciation and inferences based on genetic distances. Evolution 34, 719729.CrossRefGoogle ScholarPubMed