Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T06:48:55.343Z Has data issue: false hasContentIssue false

Genetic investigation of a negatively phototactic strain of Chlamydomonas reinhardtii

Published online by Cambridge University Press:  14 April 2009

Robert D. Smyth
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13210
W. T. Ebersold
Affiliation:
Department of Biology, University of California, Los Angeles, California 90024
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two laboratory strains of the green alga Chlamydomonas reinhardtii137c differ in their pattern of phototactic aggregation. One is positively phototactic under conditions where the other is negatively phototactic. The trait segregates 2:2 in tetrads and maps to a single locus. Heterozygous diploids are positively phototactic, showing that this allele is dominant. The aggregation pattern caused by either allele is not altered by the introduction of an unlinked gene that suppresses development of the eyespot. Probably the strains already differed in phototactic behaviour at the time they were first isolated. They may therefore reflect a genetic polymorphism common among soil algae. The genetic data allowed another significant observation not specifically related to phototaxis. Anomalous products from some crosses suggest that four nuclei sometimes fuse into a tetraploid zygote that then undergoes meiosis. The meiotic products that result are diploid. This represents a previously undescribed mechanism of diploid formation in Chlamydomonas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Boscov, J. S. & Feinleib, M. E. (1979). Phototactic response of Chlamydomonas to flashes of light. II. Response of individual cells. Photochemistry and Photobiology 30, 499505.Google Scholar
Cobbs, G. (1978). Renewal process approach to the theory of genetic linkage: case of no chromatid interference. Genetics 89, 563581.Google Scholar
Cox, D. R. & Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events. London: Chapman and Hall.Google Scholar
Ebersold, W. T. (1967). Chlamydomonas reinhardi: heterozygous diploid strains. Science (Wash.) 157, 447449.Google Scholar
Ebersold, W. T. & Levine, R. P. (1959). A genetic analysis of linkage group I of Chlamydomonas reinhardi. Zeitschrift für Vererbungslehre 90, 7482.Google Scholar
Ebersold, W. T., Levine, R. P., Levine, E. E. & Olmsted, M. A. (1962). Linkage maps in Chlamydomonas reinhardi. Genetics 47, 531543.Google Scholar
Eves, E. M. & Chiang, K.-S. (1982). Genetics of Chlamydomonas reinhardtii diploide. I. Isolation and characterization and meiotic segregation pattern of a homozygous diploid. Genetics 100, 3560.Google Scholar
Fincham, J. R. S. & Day, P. R. (1965). Fungal Genetics, 2nd ed.Philadelphia: Davis.Google Scholar
Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T. & Nakanishi, K. (1984). A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature (Lond.) 311, 756759.CrossRefGoogle ScholarPubMed
Foster, K. W. & Smyth, R. D. (1980). Light antennas in phototactic algae. Microbiological Reviews 44, 572630.Google Scholar
Gillham, N. W. (1978). Organelle Heredity. New York: Raven Press.Google Scholar
Harris, E. H. (1982). Nuclear gene loci of Chlamydomonas reinhardtii. In Genetic Maps, vol. 2, (ed. O'Brien, S. J.), pp. 168174. Frederick, MD: National Cancer Institute.Google Scholar
Hartshorne, J. N. (1953). The function of the eyespot in Chlamydomonas. New Phytologist 52, 292297.CrossRefGoogle Scholar
Haupt, W. (1959). Die Phototaxis der Algen. In Handbuch der Pflanzenphysiologie, vol. 17/1 (ed. Ruhland, W.), pp. 318370. Berlin: Springer-Verlag.Google Scholar
Hirschberg, R. & Stavis, R. (1977). Phototaxis mutants of Chlamydomonas reinhardtii. Journal of Bacteriology 129, 803808.CrossRefGoogle ScholarPubMed
Hoshaw, R. W. (1965). Mating types of Chlamydomonas from the collection of Gilbert M. Smith. Journal of Phycology 1, 194196.Google Scholar
Huang, B., Ramanis, Z., Dutcher, S. K., Luck, D. J. L. (1982). Uniflagellar mutants of Chlamydomonas: evidence for the role of basal bodies in transmission of positional information. Cell 29, 745753.Google Scholar
Hudock, G. A. & Hudock, M. O. (1973). Phototaxis: isolation of mutant strains of Chlamydomonas reinhardi with reversed sign of response. Journal of Protozoology 20, 139140.CrossRefGoogle ScholarPubMed
Hutner, S. H., Provosoli, L., Schatz, A. & Haskins, C. P. (1950). Some approaches to the study of the role of metals in the metabolism of microorganisms. Proceedings of the American Philosophical Society 94, 152170.Google Scholar
Kamiya, R. & Witman, G. B. (1984). Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. Journal of Cell Biology 98, 97107.Google Scholar
Lee, R. W., Gillham, N. W., Van Winkle, K. P. & Boynton, J. E. (1973). Preferential recovery of uniparental streptomycin resistant mutants from diploid Chlamydomonas reinhardtii. Molecular and General Genetics 121, 109116.Google Scholar
Lee, R. W., Whiteway, M. S. & Yorke, M. A. (1976). Recovery of sexually viable non-diploids from diploid Chlamydomonas reinhardtii. Genetics 83, s44.Google Scholar
Levine, R. P. & Ebersold, W. T. (1960). The genetics and cytology of Chlamydomonas. Annual Review of Microbiology 14, 197216.CrossRefGoogle ScholarPubMed
Lewin, R. A. (1952). Ultraviolet induced mutations in Chlamydomonas moewusii Gerloff. Journal of General Microbiology 6, 233248.CrossRefGoogle ScholarPubMed
Martinek, G. W., Ebersold, W. T. & Nakamura, K. (1970). Mitotic recombination in Chlamydomonas reinhardi. Genetics 64, s412.Google Scholar
Matagne, R. F. & Orbans, A. (1980). Somatic segregation in diploid Chlamydomonas reinhardii. Journal of General Microbiology 119, 7177.Google Scholar
Morel-Laurens, N. M. L. & Feinleib, M. E. (1983). Photomovement in an eyeless mutant of Chlamydomonas reinhardtii. Photochemistry and Photobiology 37, 189194.CrossRefGoogle Scholar
Nultsch, W., Throm, G. & Von Rimscha, I. (1971). Phototaktische Untersuchungen an Chlamydomonas reinhardii Dangeard in homokontinuierlicher Kultur. Archiv für Mikrobiologie 80, 351369.Google Scholar
Perkins, D. D. (1953). The detection of linkage in tetrad analysis. Genetics 38, 187197.CrossRefGoogle ScholarPubMed
Sager, R. (1955). Inheritance in the green alga Chlamydomonas reinhardi. Genetics 40, 476489.Google Scholar
Sager, R. (1972). Cytoplasmic Genes and Organelles. New York and London: Academic Press.Google Scholar
Schaechter, M. & DeLamater, E. D. (1956). Studies on meiosis in Chlamydomonas. Journal of the Elisha Mitchell Scientific Society 72, 7380.Google Scholar
Smith, G. M. & Regnery, D. C. (1950). Inheritance of sexuality in Chlamydomonas reinhardi. Proceedings of the National Academy of Science, USA 36, 246248.Google Scholar
Smyth, R. D. & Berg, H. C. (1982). Change in flagellar beat frequency of Chlamydomonas in response to light. Cell Motility Supplement 1, 211215.Google Scholar
Smyth, R. D., Martinek, G. W. & Ebersold, W. T. (1975). Linkage of six genes in Chlamydomonas reinhardtii and the construction of linkage test strains. Journal of Bacteriology 124, 16151617.Google Scholar
Smyth, R. D. & Ebersold, W. T. (1970). A Chlamydomonas mutant with altered phototactic response. Genetics 64, s62.Google Scholar
Strasburger, E. (1876). Wirkung des Lichtes und der Wärme auf Schwarmsporen. Jenaische Zeitschrift für Naturwissenschaft 12, 551625.Google Scholar
Warr, J. R. (1968). A mutant of Chlamydomonas reinhardii with abnormal cell division. Journal of General Microbiology 52, 243251.Google Scholar