Published online by Cambridge University Press: 14 April 2009
1. The rate of hydrolysis by sheep plasma of some carboxylic and phosphate esters has been determined for a random flock, and for a flock previously selected for its ability to hydrolyse di-(2-chloroethyl) aryl phosphates.
2. A discontinuous variation in hydrolysis rate was found with all substrates tested and, using combinations of substrates, six types of plasma could be distinguished, each type having a different pattern of esterase activity.
3. The most useful substrates for distinguishing between phenotypes were 1-naphthyl acetate and 4-ethoxycarbonylcoumarin-7-yl acetate. Three rates of hydrolysis were possible for each of these esters, and the highest rate for one was invariably combined with the lowest rate for the other, although the converse did not apply.
4. To explain these results, and those of Lee (1964), it has been postulated that the quantitative production of esterase hydrolysing 1-naphthyl acetate is governed by the presence of an allele, termed Esa, at a particular gene locus. Similarly, the production of esterase hydrolysing 4-ethoxycarbonylcoumarin-7-yl acetate is determined by allele Esb, and where neither substrate is attacked the presence of a third allele, Esc, is proposed.
5. The hydrolysis rates of haloxon, 1-naphthyl butyrate and 4-nitrophenyl butyrate varied in the same way as that of 1-naphthyl acetate, whereas the hydrolysis of indophenyl acetate followed the same pattern as that of 4-ethoxycarbonylcoumarin-7-yl acetate. The variation in hydrolysis rate of Coroxon could be explained by assuming that Esa and Esb are equal in this respect.
6. A mating experiment produced results which were in accordance with the genetic hypothesis, but were too few in number to provide confirmation.
7. The genetic marking of six types of sheep is possible, utilizing the variation in plasma A-esterase activity.