Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T13:56:43.392Z Has data issue: false hasContentIssue false

Genetic control of male cuticular hydrocarbons in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Jean-François Ferveur*
Affiliation:
Mécanismes de Communication, URA-CNRS 1491, Université Paris-Sud, 91405 Orsay, France
Jean-Marc Jallon
Affiliation:
Mécanismes de Communication, URA-CNRS 1491, Université Paris-Sud, 91405 Orsay, France
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

7-tricosene (7-T) and 7-pentacosene (7-P) are the two main hydrocarbons on the cuticle of male Drosophila melanogaster. These two substances might play a pheromonal role during courtship behaviour. We investigated the genetic basis of the quantitative polymorphism observed in the production of 7-T and 7-P. Strains of different geographic origin, with males producing either predominantly 7-T or predominantly 7-P, were hybridized with strains carrying genetic markers. We found that chromosome II changes the balance between 7-T and 7-P while chromosome III regulates the overall quantity of both 7-monoenes. We have also characterized and roughly mapped sept and smoq, two genetic factors on chromosome II that act additively on the production of both cuticular hydrocarbons. The genetic control of the variation in 7-T and 7-P varies between D. melanogaster strains and between D. melanogaster and its sibling species D.simulans. The possible evolutionary and physiological causes of this variation as well as its functional implication for courtship behaviour are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Adams, T. S., (1986). Effect of different female-produced pheromone components on male courtship behavior in the house fly, Musca domestica. In Advances in Invertebrate Reproduction 4, (ed. Porchet, M., Andrews, J. C., and Dhainaut, A.), pp. 297304. Amsterdam: Elsevier.Google Scholar
Antony, C., & Jallon, J.-M., (1982). The chemical basis for sex recognition in Drosophila melanogaster. Journal of Insect Physiology 28, 873880.Google Scholar
Antony, C., Davis, T. L., Carlson, D. A., Pechine, J.-M., & Jallon, J.-M., (1985). Compared behavioral responses of male Drosophila melanogaster (Canton S) to natural and synthetic aphrodisiacs. Journal of Chemical Ecology 11, 16171629.CrossRefGoogle Scholar
Bauer, S. J., & Sokolowski, M. B., (1985). A genetic analysis of path length and pupation height in a natural population of Drosophila melanogaster. Canadian Journal of Genetics and Cytology 27, 334340.CrossRefGoogle Scholar
Carlson, D., Mayer, M. S., Silhacek, D., James, J., Beroza, M., & Bierl, B., (1971). Sex attractant pheromone of the housefly: isolation, identification and synthesis. Science 174, 7677.CrossRefGoogle Scholar
Yong, T. P. Chan, & Jallon, J.-M., (1986). Synthèse de novo d'hydrocarbures potentiellement aphrodisiaques chez les Drosophiles. Comptes Rendus de l'Académie des Sciences de Paris 303, 197202.Google Scholar
Cobb, M., & Ferveur, J.-F., (1996 a). Evolution and genetic control of mate recognition and stimulation in Drosophila. Behavioural Processes 35, 3554.CrossRefGoogle Scholar
Cobb, M., & Ferveur, J.-F., (1996 b). Female mate discrimination or male responses to female stimulation? Evolution (in the Press).CrossRefGoogle Scholar
Cobb, M., & Jallon, J.-M., (1990). Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Animal Behaviour 39, 10581067.CrossRefGoogle Scholar
Coyne, J. A., Crittenden, A. P., & Mah, K., (1994). Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265, 14611464.Google Scholar
Edney, E. B., (1977). Water Balance in Land Arthropods. Berlin: Springer.CrossRefGoogle Scholar
Ferveur, J.-F., (1991). Genetic control of pheromones in Drosophila.simulans. I. Ngbo, a locus on the second chromosome. Genetics 128, 293301.Google Scholar
Ferveur, J.-F., & Jallon, J.-M., (1993 a). Genetic control of pheromones in Drosophila.simulans. II. kite, a locus on the X-chromosome. Genetics 133, 561567.CrossRefGoogle Scholar
Ferveur, J.-F., & Jallon, J.-M. (1993 b). Nerd, a locus on chromosome III, affects male reproductive behavior in Drosophila melanogaster. Naturwissenschaften 80, 474475.CrossRefGoogle Scholar
Ferveur, J.-F., Cobb, M., & Jallon, J.-M., (1989). Complex chemical messages in Drosophila. In Neurobiology of Sensory Systems, (ed. Sing, R. N., and Strausfeld, N. J.) pp. 397409. New York: Plenum Press.CrossRefGoogle Scholar
Ferveur, J.-F., Cobb, M., Boukella, H., & Jallon, J.-M., (1996). World-wide variation in Drosophila melanogaster sex pheromone: behavioral effects, genetic bases and evolutionary consequences. Genetica 97. 7380.CrossRefGoogle ScholarPubMed
Howard, R. W., & Blomquist, G. J., (1982). Chemical ecology and biochemistry of insect hydrocarbons. Annual Review of Entomology 27, 149172.CrossRefGoogle Scholar
Jallon, J.-M. (1984). A few chemical words exchanged by Drosophila during courtship and mating. Behavior Genetics 14, 441476.CrossRefGoogle ScholarPubMed
Jallon, J.-M., & David, J. R., (1987). Variations in cuticular hydrocarbons along the eight species of the Drosophila melanogaster subgroup. Evolution 41, 487502.Google Scholar
Lemeunier, F., David, J. R., Tsacas, L., & Ashburner, M., (1986). The melanogaster species group. In Genetics and Biology of Drosophila, Vol. 3E (ed. Ashburner, M., Carson, H. L., and Thompson, J. N.), pp. 147256. London: Academic Press.Google Scholar
Lindsley, D. L., & Zimm, G. G., (1992). The Genome of Drosophila melanogaster. London: Academic Press.Google Scholar
Luyten, I., (1982). Variations intraspécifiques et inter spécifiques des hydrocarbures cuticulaires chez Drosophila simulans. Comptes Rendus de V Academie des Sciences de Paris 295, 723736.Google Scholar
Oguma, Y., Nemoto, T., & Kuwahara, Y., (1992). A sex pheromone study of a fruit fly Drosophila virilis Sturtevant (Diptera: Drosophilidae): additive effect of cuticular alkadienes to the major sex pheromone. Applied Entomological Zoology 4, 499505.CrossRefGoogle Scholar
Scott, D., (1994). Genetic variation for female mate discrimination in Drosophila melanogaster. Evolution 48, 112121.Google Scholar
Scott, D., & Richmond, R. C., (1988). A genetic analysis of male-predominant pheromones of Drosophila melanogaster. Genetics 119, 639646.CrossRefGoogle ScholarPubMed
Shorey, H. H., & Bartell, R. J., (1970). Role of a volatile sex pheromone in stimulating male courtship behavior in Drosophila melanogaster. Animal Behavior 18, 159164.CrossRefGoogle ScholarPubMed
Sokolowski, M. B., (1985). Genetics and ecology of Drosophila melanogaster larval foraging and population behavior. Journal of Insect Physiology 31, 857864.CrossRefGoogle Scholar
Toolson, R. C., & Kuper-Simbron, R., (1989). Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects on sexual dimorphism and thermal-acclimation ability. Evolution 43, 468473.Google ScholarPubMed