Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T12:52:38.891Z Has data issue: false hasContentIssue false

Genetic contribution to sex determination in turtles with environmental sex determination

Published online by Cambridge University Press:  14 April 2009

Marc Girondot*
Affiliation:
Laboratoire de Biochimie du Développement, Institut Jacques Monod, Centre National de la Recherche Scientifique et Universite Paris 7, 2 place Jussieu, 75251 Paris CEDEX 05, France
Patrick Zaborski
Affiliation:
Laboratoire de Biochimie du Développement, Institut Jacques Monod, Centre National de la Recherche Scientifique et Universite Paris 7, 2 place Jussieu, 75251 Paris CEDEX 05, France Laboratoire d'Évolution des Systémes Naturels et Modifiés, Muséum National d'Histoire Naturelle, 36, rue Geoffroy-Saint-Hilaire, 75005 Paris, France
Jean Servan
Affiliation:
Centre de Biologie Cellulaire, Centre National de la Recherche Scientifique, 67 rue Maurice Günsbourg, 94205 Ivry-sur-Seine CEDEX, France
Claude Pieau
Affiliation:
Laboratoire de Biochimie du Développement, Institut Jacques Monod, Centre National de la Recherche Scientifique et Universite Paris 7, 2 place Jussieu, 75251 Paris CEDEX 05, France
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In many reptiles, sex determination is temperature-sensitive. This phenomenon has been shown to take place in the laboratory as well as in nature, but its effect on natural populations remains questionable. In the turtle Emys orbicularis, the effects of temperature override a weak mechanism of genetic sex determination which is revealed in incubation at pivotal temperature. At this temperature, the sexual phenotype is concordant with the expression of the serologically defined H-Y antigen (H-Ys) in non-gonadal tissues; males are H-Ys negative (H-Y) whereas females are H-Ys positive (H-Y+). To estimate the importance of sexual inversion (sexual phenotype and H-Ys expression discordant) in populations of Brenne (France), the frequencies of male and female sexual phenotypes among H-Ys phenotypes were determined. The frequencies of sex reversed individuals are low, only 6 % of phenotypic females being H-Y and 11 % of phenotypic males being H-Y+. According to these data, two theoretical models have been constructed to estimate the contribution to sex determination of individuals in relation to their genotype. The first model excludes any influence of incubation temperature and sexual phenotype on the fitness of individuals. The second one considers that these parameters influence fitness because this model has been previously shown to favour environmental sex determination. In both models, it appears that sex determination can be viewed as genotypic and monogenic with some individuals sexually inverted by theaction of temperature. One category of homozygous animals differentiates mainly into one sex, and the heterozygous animals differentiate mainly into the other sex. The second category of homozygotes has a low frequency in the populations and can differentiate as male or female without high constraint. Then it is estimated that in Brenne approximately 83% of the eggs are incubated in conditions allowing the genetic component to influence sex determination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Bull, J. J. (1980). Sex determination in reptiles. Quarterly Review of Biology 55, 321.CrossRefGoogle Scholar
Bull, J. J. (1981). Sex ratio evolution when fitness varies. Heredity 46, 926.CrossRefGoogle Scholar
Bull, J. J. (1983). Evolution of Sex Determining Mechanisms. Menlo Park, California, USA: The Benjamin/Cummings Publishing Company, Inc.Google Scholar
Bull, J. J. & Charnov, E. L. (1989). Enigmatic reptilian sex ratios. Evolution 43, 15611566.CrossRefGoogle ScholarPubMed
Bull, J. J. & Vogt, R. C. (1979). Temperature-dependent sex determination in turtles. Science 206, 11861188.CrossRefGoogle ScholarPubMed
Bull, J. J., Vogt, R. C. & Bulmer, M. G. (1982). Heritability of sex ratio in turtles with environmental sex determination. Evolution 36, 333341.CrossRefGoogle ScholarPubMed
Burgoyne, P. S., Levy, E. R. & McLaren, A. (1986). Spermatogenic failure in male mice lacking H-Y antigen. Nature 320, 170172.CrossRefGoogle ScholarPubMed
Cantrell, M. A., Bogan, J. S., Simpson, E., Bicknell, J. N., Goulmy, E., Chandler, P., Pagon, R. A., Walker, D. C., Thuline, H. C., Graham, J. M., Delachapelle, A., Page, D. C. & Disteche, C. M. (1992). Deletion mapping of H-Y-antigen to the long arm of the human Y-chromo-some. Genomics 13, 12551260.CrossRefGoogle Scholar
Carr, J. L. & Bickham, J. W. (1981). Sex chromosomes of the Asian black pond turtle, Siebenrockiella crassicolis (Testudines: Emydidae). Cytogenetic and CellGenetics 31, 178183.CrossRefGoogle Scholar
Charnov, E. L., & Bull, J. J. (1977). When is sex environmentally determined? Nature 226, 828830.CrossRefGoogle Scholar
Conover, D. O. (1984). Adaptive significance of temperature-dependent sex determination in a fish. American Naturalist 123, 297313.CrossRefGoogle Scholar
Deeming, D. C. & Ferguson, M. W. J. (1989). The mechanism of temperature-dependent sex determination in crocodilians: a hypothesis. American Zoologist 29, 973985.CrossRefGoogle Scholar
Deeming, D. C. & Ferguson, W. J. (1991). Physiological effects of incubation temperature on embryonic development in reptiles and birds. In Egg Incubation: its Effects on Embryonic Development in Birds and Reptiles. (ed. Deeming, D. C. and Ferguson, W. J.), pp. 147171. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Demas, S., Duronslet, M., Wachtel, S., Caillouet, C. & Nakamura, D. (1990). Sex-specific DNA in reptiles with temperature sex determination. Journal of Experimental Zoology 253, 319324.CrossRefGoogle ScholarPubMed
Eichwald, E. J. & Silmser, C. R. (1955). Untitled communication. Transplantation Bulletin 2, 148149.Google Scholar
Engel, W., Klemme, B. & Schmid, M. (1981). H-Y antigen and sex-determination in turtles. Differentiation 20, 152156.CrossRefGoogle Scholar
Eshel, I. (1975). Selection on sex-ratio and the evolution of sex-determination. Heredity 34, 351361.CrossRefGoogle ScholarPubMed
Ewert, M. A. & Nelson, C. E. (1991). Sex determination in turtles: diverse patterns and some possible adaptive values. Copeia 91, 5069.CrossRefGoogle Scholar
Fisher, R. A. (1929). The Genetical Theory of Natural Selection. Oxford: Oxford University Press.Google Scholar
Girondot, M. & Pieau, C. (1993). Effects of sexual differences of age at maturity and survival on population sex ratio. Evolutionary Ecology 7, 645650.CrossRefGoogle Scholar
Goldberg, E. H., McLaren, A. & Reilly, B. (1991). Male antigen defined serologically does not identify a factor responsible for testicular development. Journal of Reproductive Immunology 20, 305309.CrossRefGoogle Scholar
Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Müsterberg, A., Vivian, N., Goodfellow, P. & Lovell-Badge, R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245250.CrossRefGoogle Scholar
Janzen, F. J. (1992). Heritable variation for sex ratio under environmental sex determination in the common snapping turtle (Chelydra serpentina). Genetics 131, 155161.CrossRefGoogle ScholarPubMed
Janzen, F. J. & Paukstis, G. L. (1991a). Environmental sex determination in reptiles: ecology, evolutionary, and experimental design. Quarterly Review of Biology 66, 149179.CrossRefGoogle Scholar
Janzen, F. J. & Paukstis, G. L. (1991b). A preliminary test of the adaptative significance of environmental sex determination in reptiles. Evolution 45, 435440.CrossRefGoogle ScholarPubMed
Karlin, S. & Lessard, S. (1984). On the optimal sex-ratio: a stability analysis based on a characterization for one-locus multiallele viability models. Journal of Mathematical Biology 20, 1538.CrossRefGoogle ScholarPubMed
Karlin, S. & Lessard, S. (1986). Theoretical Studies on Sex Ratio Evolution. Princeton, New Jersey, USA: Princeton University Press.Google ScholarPubMed
Lovich, J. E. & Gibbons, J. W. (1990). Age at maturity influences adult sex ratio in the turtle Malaclemys terrapin. Oikos 59, 126134.CrossRefGoogle Scholar
McLaren, A., Simpson, E., Tomonari, K., Chandler, P. & Hogg, H. (1984). Male sexual differentiation in mice lacking H-Y antigen. Nature 312, 345348.CrossRefGoogle ScholarPubMed
Nakamura, D., Wachtel, S. S., Lance, V. & Becak, W. (1987). On the evolution of sex determination. Proceedings of the Royal Society, London 232(B), 159180.Google ScholarPubMed
Paukstis, G. L., Gutzke, W. H. N. & Packard, G. C. (1984). Effects of substrate water potential and fluctuating temperatures on sex ratios of hatchling painted turtles (Chrysemys picta). Canadian Journal of Zoology 62, 14911494.CrossRefGoogle Scholar
Pieau, C. (1973). Nouvelles données expérimentales con-cernant l'effet de la température sur la différentiation sexuelle chez les embryons de Chéloniens. Comptes Rendus de l'Academie des Sciences, Paris 277(D), 27892792.Google Scholar
Pieau, C. (1982). Modalities of the action of temperature on sexual differentiation in field-developing embryos of the European pond turtle Emys orbicularis (Emydidae). Journal of Experimental Zoology 220, 353360.CrossRefGoogle Scholar
Raynaud, A. & Pieau, C. (1985). Embryonic development of the genital system. In Biology of the Reptilia (ed. Gans, C.), Vol. 15(B), pp. 149300. New York: John Wiley and Sons.Google Scholar
Scudo, F. M. (1964). Sex population genetics. La Ricerca Scientifica 34, II-B, 93146.Google Scholar
Servan, J. (1986). Utilisation d'un nouveau piège pour l'étude des populations de Cistudes d'Europe Emys orbicularis (Reptilia, Testudines). Revue francaise d'Ecologie (Terre Vie) 41, 111117.Google Scholar
Servan, J., Zaborski, P., Dorizzi, M. & Pieau, C. (1989). Female-biased sex-ratio in adults of the turtle Emys orbicularis at the northern limit of its distribution in France: a probable consequence of interaction of temperature with genotypic sex determination. Canadian Journal of Zoology 67, 12791284.CrossRefGoogle Scholar
Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A.-M., Lovell-Badge, R. & Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240244.CrossRefGoogle ScholarPubMed
Sites, J. W. Jr, Bickham, J. W. & Haiduk, M. W. (1979). Derived X chromosome in the turtle genus Staurotypus. Science 206, 14101412.CrossRefGoogle ScholarPubMed
Tokunaga, S. (1985). Temperature-dependent sex determination in Gekko japonicus (Gekkonidae, Reptilia). Development, Growth and Differentiation 27, 117120.CrossRefGoogle ScholarPubMed
Vogt, R. C. & Bull, J. J. (1984). Ecology of hatchling sex ratio in map turtles. Ecology 65, 582587.CrossRefGoogle Scholar
Wachtel, S. S. (1983). H-Y Antigen and the Biology of Sex Determination. New York: Grune and Stratton.Google Scholar
Wachtel, S. S., Ohno, S., Koo, G. C. & Boyse, E. A. (1975). Possible role for H-Y antigen in the primary determination of sex. Nature 257, 235236.CrossRefGoogle ScholarPubMed
Wellins, D. J. (1987). Use of an H-Y antigen assay for sex determination in sea turtles. Copeia 87, 4652.CrossRefGoogle Scholar
Wiberg, U. H. (1987). Facts and considerations about sex-specific antigens. Human Genetics 76, 207219.CrossRefGoogle ScholarPubMed
Wilhoft, D. C., Hotaling, E. & Franks, P. (1983). Effects of temperature on sex determination in embryos of the snapping turtle, Chelydra serpentina. Journal of Her-petology 17, 3842.Google Scholar
Wolf, U. (1985). Genes of the H-Y antigen system and their expression in mammals. In The Y Chromosome: A. Basic Characteristic of the Y Chromosome (ed. Sandberg, A. A.), pp. 8191. New York: Alan Liss.Google Scholar
Woodward, D. E. & Murray, J. D. (1993). On the effect of temperature-dependent sex determination on sex ratio and survivorship in crocodilians. Proceedings of the Royal Society, London 232(B), 159180.Google Scholar
Zaborski, P. (1979). Detection of H-Y antigen on mouse sperm by the use of Staphylococcus aureus. Transplantation 27, 348350.Google ScholarPubMed
Zaborski, P. (1985). H-Y antigen in nonmammalian vertebrates. Archives d'Anatomie microscopique et de Morphologie expérimentale 74, 3337.Google ScholarPubMed
Zaborski, P., Dorizzi, M. & Pieau, C. (1982). H-Y antigen expression in temperature sex-reversed turtles (Emys orbicularis). Differentiation 22, 7378.CrossRefGoogle ScholarPubMed
Zaborski, P., Dorizzi, M. & Pieau, C. (1988). Temperature-dependent gonadal differentiation in the turtle Emys orbicularis: concordance between sexual phenotype and serological H-Y antigen expression at threshold temperature. Differentiation 38, 1720.CrossRefGoogle ScholarPubMed