Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:48:55.580Z Has data issue: false hasContentIssue false

A genetic analysis of the rudimentary locus of Drosophila melanogaster*

Published online by Cambridge University Press:  14 April 2009

Peter S. Carlson
Affiliation:
Department of Biology, Yale UniversityNew Haven, Connecticut 06520
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A study of the structural and functional organization of the rudimentary (r: 1–54·5) locus of Drosophila melanogaster has demonstrated that alleles of this gene reside in a number of recombinationally separable sites, and display a complex pattern of interallelic interaction. Data relating to interallelic interaction have been utilized to construct a linear complementation map consisting of 7 complementation units and 16 complementation groups. Comparison of the genetic fine structure map and the complementation map shows that the two maps are approximately co-linear. Totally non-complementing alleles reside at both ends of the fine structure map. The r locus is best interpreted by the model of a single cistron whose product affects several distinct developmental processes and whose alleles display a complex pattern of interallelic complementation. Intragenic recombination within the r locus is accompanied by the appearance of parental and recombinant flanking marker classes not expected on the basis of reciprocal recombination. Studies with half-tetrads demonstrate that intragenic recombination can occur either by gene conversion or by a reciprocal exchange mechanism. The pattern of organization seen at the r locus is similar to patterns of organization found in work with fungal genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Bailie, D. L., Astell, C. & Scholefield, J. (1966). Double crossovers within a short genetic interval in Drosophila melanogaster. Canadian Journal of Genetics and Cytology 8, 350.Google Scholar
Bliss, C. I. (1967). Statistics in Biology, vol. I, 558 pp. New York: McGraw-Hill.Google Scholar
Brosseau, G., Nicoletti, B., Grell, E. & Lindsley, D. (1961). Production of altered Y chromosomes bearing specific sections of the X chromosome in Drosophila. Genetics 46, 339346.CrossRefGoogle ScholarPubMed
Carlson, P. S. (1970). A genetic analysis of the rudimentary locus of Drosophila melanogaster. Ph.D. Dissertation, Yale University, New Haven, Conn.Google Scholar
Case, M. B. & Giles, N. H. (1958). Evidence from tetrad analysis for both normal and aberrant recombination between allelic mutants in Neurospora crassa. Proceedings of the National Academy of Sciences (Washington) 44, 378390.CrossRefGoogle ScholarPubMed
Catcheside, D., Jessop, A. & Smith, B. (1964). Genetic controls of allelic recombination in Neurospora. Nature, London 202, 12421243.CrossRefGoogle ScholarPubMed
Chovnick, A. (1961). The garnet locus in Drosophila melanogaster: I. Pseudoallelism. Genetics 46, 493507.CrossRefGoogle ScholarPubMed
Chovnick, A., Ballantyne, G. A., Baillie, D. L. & Holm, D. G. (1970). Gene conversion in higher organisms: Half-tetrad analysis of recombination within the rosy cistron of Drosophila melanogaster. Genetics 66, 315329.CrossRefGoogle ScholarPubMed
Chovnick, A., Finnerty, V. G., Schalet, A. & Duck, P. (1969). Studies on genetic organization in higher organisms: I. Analysis of a complex gene in Drosophila. Genetics 62, 145160.CrossRefGoogle ScholarPubMed
Counce, S. J. (1956). Studies on female-sterility genes in Drosophila melanogaster: III. Effect of the gene rudimentary on embryonic development. Zeitschrift Fur Vererbungslehre 87, 482491.Google ScholarPubMed
Doane, W. W. (1960 a). Developmental physiology of a female sterility mutant in Drosophila melanogaster. Ph.D. Dissertation, Yale University, New Haven, Conn.Google Scholar
Dorn, G. L. & Burdick, A. B. (1962). On the recombinational structure and complementation relationships in the m-dy complex of Drosophila melanogaster. Genetics 47, 503518.CrossRefGoogle ScholarPubMed
Fahmy, O. & Fahmy, M. (1959). Complementation among the sub-genic mutants of the r locus of Drosophila melanogaster. Nature, London 184, 19271929.CrossRefGoogle Scholar
Fincham, J. R. S. (1966). Genetic Complementation, 143 pp. New York: W. A. Benjamin, Inc.Google Scholar
Finnerty, V. G., Duck, P. & Chovnick, A. (1970). Studies on genetic organization in higher organisms: II. Complementation and fine structure of the maroon-like locus of Drosophila melanogaster. Proceedings of the National Academy of Sciences (Washington) 65, 939946.CrossRefGoogle ScholarPubMed
Gillie, O. (1966). The interpretation of complementation data. Genetical Research 8, 932.CrossRefGoogle ScholarPubMed
Green, M. M. (1960). Double crossing over or gene conversion at the white locus in Drosophila melanogaster? Genetics 45, 1518.CrossRefGoogle ScholarPubMed
Green, M. M. (1963 a). Interallelic complementation and recombination at the rudimentary wing locus in Drosophila melanogaster. Genetics 34, 242253.Google Scholar
Green, M. M. (1963 b). Pseudoalleles and recombination in Drosophila. In Methodology in Basic Genetics, p. 279. Ed. Burdette, W.. San Francisco: Holden-Day.Google Scholar
Hexter, W. (1963). Non-reciprocal events at the garnet locus in Drosophila melanogaster. Proceedings of the National Academy of Sciences (Washington) 50, 372380.CrossRefGoogle Scholar
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research 5, 282304.CrossRefGoogle Scholar
Holliday, R. (1968). Genetic recombination in fungi. In Replication and Recombination of Genetic Material, p. 157. Ed. Peacock, W. and Brock, R.. Canberra: Australian Academy of Sciences.Google Scholar
Ishikawa, T. (1962). Genetic studies of ad-8 mutants in Neurospora crassa. I. Genetic fine structure of ad-8 locus. Genetics 47, 1147.CrossRefGoogle ScholarPubMed
Lewis, E. B. (1967). Genes and gene complexes. In Heritage from Mendel, pp. 1747. Ed. Brink, R. A.. Madison: University of Wisconsin Press.Google Scholar
Lindsley, D. L. & Grell, E. H. (1967). Genetic Variations of Drosophila melanogaster. Carnegie Institution of Washington Publication, no. 627.Google Scholar
Lynch, C. (1919). An analysis of certain cases of intra-specific sterility. Genetics 4, 501533.CrossRefGoogle ScholarPubMed
Morgan, T. H. (1912). A modification of the sex-ratio and of other ratios in Drosophila through linkage. Zeitschrift Fur Vererbungslehre 7, 323345.Google Scholar
Morgan, T. H. (1915). The infertility of rudimentary winged females of Drosophila ampelo-phila. American Naturalist 49, 240250.CrossRefGoogle Scholar
Muller, H. (1936). Insertion of desired genes into attached-X's. Drosophila Information Service 6, 8.Google Scholar
Oliver, C. P. (1940). A reversion to wild type associated with crossing over in Drosophila melanogaster. Proceedings of the National Academy of Sciences (Washington) 26, 452454.CrossRefGoogle ScholarPubMed
Poulson, D. F. (1950). Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster Meign. in Biology of Drosophila, pp. 168274. Ed. Demerec, M.. New York: John Wiley and Sons.Google Scholar
Smith, P. D., Finnerty, V. G. & Chovnick, A. (1970). Gene conversion in Drosophila: non-reciprocal events at the maroon-like cistron. In manuscript.Google Scholar
Welshons, W. G. & Halle, Von, E. S. (1962). Pseudoallelism at the Notch locus in Drosophila. Genetics 47, 743759.CrossRefGoogle ScholarPubMed
Whitehouse, H. (1963). A theory of crossing over by means of hybrid deoxyribonucleic acid. Nature, London 199, 10341035.CrossRefGoogle ScholarPubMed
Whitehouse, H. (1970). The mechanism of genetic recombination. Biological Reviews 45, 265315.CrossRefGoogle ScholarPubMed
Whitehouse, H. & Hastings, P. (1965). The analysis of genetic recombination on the polaron hybrid DNA model. Genetical Research 6, 2792.CrossRefGoogle ScholarPubMed