Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T00:12:33.507Z Has data issue: false hasContentIssue false

Gene transfer in Drosophila melanogaster: genetic transformations induced by the DNA of transformed stocks

Published online by Cambridge University Press:  14 April 2009

Allen S. Fox
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Sheldon D. Parzen
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Helen Salverson
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Sei Byung Yoon
Affiliation:
Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

DNA prepared from transformed stocks of Drosophila melanogaster induces second-step transformations resembling the original. The gross yield of transformants induced by transformed DNA is several times higher than that induced by the original allo-DNA, but much of this high frequency is attributable to a few exceptionally large clusters of transformants among flies treated with transformed DNA. When these large clusters are omitted from the data, the frequency of transformants induced by DNA from transformed stocks is the same as that induced by allo-DNA. The data therefore support the conclusion that the original DNA-induced alterations resulted from the transfer of genetic material capable of indefinite replication.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Beadle, G. W. & Ephrussi, B. (1937). Development of eye colors in Drosophila: Diffusible substances and their interrelations. Genetics 22, 7686.CrossRefGoogle ScholarPubMed
Fox, A. S., Duggleby, W. F., Gelbart, W. M. & Yoon, S. B. (1970). DNA-induced transformation in Drosophila: Evidence for transmission without integration. Proceedings of the National Academy of Sciences of the U.S.A. 67, 18341838.CrossRefGoogle ScholarPubMed
Fox, A. S. & Valencia, J. B. (1973). Cytological detection of structural changes at the sites of DNA-induced transformations in the polytene chromosomes of Drosophila. Genetics 74, Suppl. s.83.Google Scholar
Fox, A. S. & Valencia, J. I. (1975). Gene transfer in Drosophila melanogaster: Cytological alterations in the salivary chromosomes of transformed stocks. Chromosoma 51, 279289.CrossRefGoogle ScholarPubMed
Fox, A. S. & Yoon, S. B. (1966). Specific genetic effects of DNA in Drosophila melanogaster. Genetics 53, 897911.CrossRefGoogle ScholarPubMed
Fox, A. S. & Yoon, S. B. (1970). DNA-induced transformation in Drosophila: Locus-specificity and the establishment of transformed stocks. Proceedings of the National Academy of Sciences 67, 16081615.CrossRefGoogle ScholarPubMed
Fox, A. S., Yoon, S. B. & Gelbart, W. M. (1971 a). DNA-induced transformation in Drosophila: Genetic analysis of transformed stocks. Proceedings of the National Academy of Sciences of the U.S.A. 68, 342346.CrossRefGoogle ScholarPubMed
Fox, A. S., Yoon, S. B., Duggleby, W. F. & Gelbart, W. M. (1971 b). Genetic transformation in Drosophila. In Informative Molecules in Biological Systems (ed. Ledoux, L. G. H.), pp. 313333. Amsterdam: North-Holland Publishing Co.Google Scholar
Illmensee, K. (1972). Developmental potencies of nuclei from cleavage, preblastoderm, and syncytial blastoderm transplanted into unfertilized eggs of Drosophila melanogaster. Wilhelm Roux Archiv für Entwicklungsmechanik der Organismen 170, 267298.CrossRefGoogle Scholar
Lefevre, G. Jr (1969). The eccentricity of vermilion deficiencies in Drosophila melanogaster. Genetics 63, 589600.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Institution of Washington, Publication 627.Google Scholar
Mead, C. G. (1964). A deoxyribonucleic acid-associated ribonucleic acid from Drosophila melanogaster. Journal of Biological Chemistry 239, 550554.CrossRefGoogle ScholarPubMed
Newhall, S. M., Nickerson, D. & Judd, D. B. (1943). Final report of the O.S.A. subcommittee on the spacing of the Munsell colors. Journal of the Optical Society of America 33, 385418.CrossRefGoogle Scholar
Okada, M., Kleinman, A. & Schneiderman, H. A. (1974). Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Developmental Biology 37, 4354.CrossRefGoogle ScholarPubMed
Schubiger, M. & Schneiderman, H. A. (1971). Nuclear transplantation in Drosophila melanogaster. Nature 230, 185186.CrossRefGoogle ScholarPubMed
Tobler, J. E. (1975). Dosage compensation and ontogenic expression of suppressed and transformed vermilion flies in Drosophila. Biochemical Genetics 13, 2943.CrossRefGoogle ScholarPubMed
Yoon, S. B. & Fox, A. S. (1965). Permeability of premature eggs from Drosophila collected with the ‘ovitron’. Nature 206, 910913.CrossRefGoogle ScholarPubMed
Zalokar, M. (1971). Transplantation of nuclei in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the U.S.A. 68, 15391541.CrossRefGoogle ScholarPubMed