Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T02:09:47.924Z Has data issue: false hasContentIssue false

Gene conversion: observations on the DNA hybrid models

Published online by Cambridge University Press:  14 April 2009

Andrzej Paszewski
Affiliation:
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, ul. Rakowiecka 36, Poland
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some features of gene conversion in fungi and their bearing on the hybrid DNA models are discussed. Available experimental data from tetrad analysis seem to give a more complex picture of polarity in intra-genic recombination and of the relations between conversion and post-meiotic segregation, and between conversion and crossing-over, than predicted by the models.

A new hypothesis of the mechanism of gene conversion with special attention given to the aspect of asymmetry in this phenomenon is proposed as an alternative to the mechanism suggested by the DNA hybrid models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Boyce, R. P. & Howard-Flanders, P. (1964). Genetic control of DNA breakdown and repair in E. coli K-12 treated with mitomycin C or ultraviolet light. Z. VererbLehre 95, 345350.Google ScholarPubMed
Case, M. E. & Giles, N. H. (1964). Allelic recombination in Neurospora: tetrad analysis of a three-point cross within the pan-2 locus. Genetics 49, 529540.CrossRefGoogle ScholarPubMed
Chiang, K. S., Kates, J. R. & Sueoka, N. (1965). Meiotic DNA replication mechanism in Chlamydomonas reinhardi. Genetics 52, 434435.Google Scholar
Doermann, A. H. & Parma, D. H. (1967). Recombination in bacteriophage T4. J. Cell Physiol. 70 (Suppl. 1), 147164.CrossRefGoogle ScholarPubMed
Emerson, S. (1966). Quantitative implications of the DNA-repair model of gene conversion. Genetics 53, 475485.CrossRefGoogle ScholarPubMed
Emerson, S. & Yu-Sun, C. C. C. (1967). Gene conversion in the Pasadena strain of Ascobolus immersus. Genetics 55, 3947.CrossRefGoogle ScholarPubMed
Esposito, R. E. (1968). Genetic recombination in synchronized cultures of Saccharomyces cerevisiae. Genetics 59, 191210.CrossRefGoogle ScholarPubMed
Fields, W. G. & Olive, L. S. (1967). The genetics of Sordaria brevicollis. III. Gene conversion involving a series of hyaline ascospore color mutants. Genetics 57, 483493.CrossRefGoogle Scholar
Fincham, J. R. S. (1967). Recombination within the am gene of Neurospora crassa. Genet. Res., Camb. 9, 4962.CrossRefGoogle Scholar
Fogel, S. & Hurst, D. D. (1967). Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57, 455481.CrossRefGoogle ScholarPubMed
Freese, E. (1957). The correlation effect for a histidine locus of Neurospora crassa. Genetics 42, 671684.CrossRefGoogle ScholarPubMed
Gajewski, W., Paszewski, A., Dawidowicz, A. & Dudzińska, B. (1968). Postmeiotic segregation in locus ‘46’ of Ascobolus immersus. Genet. Res., Camb. 11, 311317.CrossRefGoogle ScholarPubMed
Hastings, P. J. & Whitehouse, H. L. K. (1964). A polaron model of genetic recombination by the formation of hybrid deoxyribonucleic acid. Nature, Lond. 201, 10521054.CrossRefGoogle ScholarPubMed
Hogness, D. S., Doerfler, W., Egan, J. B. & Black, L. W. (1966). The position and orientation of genes in λ and λdg DNA. Cold Spring Harb. Symp. quant. Biol. 31, 129138.CrossRefGoogle Scholar
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genet. Res., Camb. 5, 282304.CrossRefGoogle Scholar
Holliday, R. (1967). In International Conference on Replication and Recombination of Genetic Material, Canberra.Google Scholar
Howard-Flanders, P. (1968). DNA repair. A. Rev. Biochem. 37, 175200.CrossRefGoogle ScholarPubMed
Kitani, Y. (1962). Three kinds of transreplication in Sordaria fimicola. Jap. J. Genet. 37, 131146.CrossRefGoogle Scholar
Kitani, Y., Olive, L. S. & El-Ani, A. S. (1962). Genetics of Sordaria fimicola. V. Aberrant segregation at the g locus. Am. J. Bot. 49, 697706.CrossRefGoogle Scholar
Meselson, M. (1967). The molecular basis of genetic recombination. In Heritage from Mendel (ed. Brink, R. A.), pp. 81104. University of Wisconsin.Google Scholar
Meselson, M. & Weigle, J. (1961). Chromosome breakage accompanying genetic recombination in bacteriophage. Proc. Natn. Acad. Sci., U.S.A. 47, 857868.CrossRefGoogle Scholar
Mousseau, J. (1967). Analyse de la structure fine d'un gène chez Ascobolus immersus. Contribution a l'étude de la recombinaison méiotique. Ph.D. thesis, University of Paris.Google Scholar
Murray, N. E. (1963). Polarized recombination and fine structure within the me-2 gene of Neurospora crossa. Genetics 48, 11631183.CrossRefGoogle Scholar
Murray, N. E. (1969). Reversal of polarized recombination of alleles in Neurospora as a function of their position. Genetics 61, 6777.CrossRefGoogle ScholarPubMed
Paszewski, A. (1967). A study on simultaneous conversions in linked genes in Ascobolus immersus. Genet. Res., Camb. 10, 121126.CrossRefGoogle Scholar
Paszewski, A. & Prażmo, W. (1969). The bearing of mutant and cross specificity on the pattern of intragenic recombination. Genet. Res. Camb. (in the Press).CrossRefGoogle Scholar
Rizet, G. & Rossignol, J. L. (1966). Sur la dimension probable des éxchanges réciproques au seul d'un locus complexe d'Ascobolus immersus. C. r. hebd. Séanc. Acad. Sci., Paris 262, 12501253.Google Scholar
Rossen, J. M. & Westergaard, M. (1966). Studies on the mechanism of crossing-over. II. Meiosis and the time of meiotic chromosome replication in ascomycete Neottiella rutilans Fr. Dennis. C. r. Trav. Lab. Carlsberg 35, 233260.Google ScholarPubMed
Rossignol, J. L. (1964). Phénomènes de recombinaison intragénique et unité fonctionnelle d'un locus chez l'Ascobolus immersus. Thesis, University of Paris.Google Scholar
Rossignol, J. L. (1967). Contribution à l'étude des phénomènes de recombinaison intragénique. Ph.D. Thesis, University of Paris.Google Scholar
Setlow, R. & Carrier, W. (1964). The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc. Natn. Acad. Sci., U.S.A. 51, 226231.CrossRefGoogle ScholarPubMed
Stadler, D. R. & Towe, A. M. (1963). Recombination of allelic cysteine mutants in Neurospora. Genetics 48, 13231344.CrossRefGoogle ScholarPubMed
Taylor, J. H. (1965). Distribution of tritium-labeled DNA among chromosomes during meiosis. I. Spermatogenesis in the grasshopper. J. Cell Biol. 25, 5767.CrossRefGoogle ScholarPubMed
Taylor, J. H. (1967). Patterns and mechanisms of genetic recombination. In Molecular Genetics, vol. 2 (ed. Taylor, J. H.), pp. 95135. New York, London: Academic Press.CrossRefGoogle Scholar
Tomizawa, J. (1967). Molecular mechanism of genetic recombination in bacteriophage: joint molecules and their conversion to recombinant molecules. J. Cell Biol. 70 (Suppl. 1), 201214.Google ScholarPubMed
Tuveson, R. W. (1969). An evaluation of the relationship between ultraviolet sensitivity and crossing-over in bacteria and fungi. Am. Nat. 130, 2330.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1963). A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature, Lond. 199, 10341040.CrossRefGoogle ScholarPubMed
Whitehouse, H. L. K. (1966). An operator model of crossing-over. Nature, Lond. 211, 708713.CrossRefGoogle ScholarPubMed
Whitehouse, H. L. K. (1967). Secondary crossing-over. Nature, Lond, 215, 13521359.CrossRefGoogle ScholarPubMed
Whitehouse, H. L. K. & Hastings, P. J. (1965). The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res., Camb. 6, 2792.CrossRefGoogle ScholarPubMed
Zimmermann, F. K. (1968). The effect of liquid holding on chemical-induced lethality and mitotic gene conversion in Saccharomyces cerevisiae. Molec. Gen. Genetics 103, 1120.CrossRefGoogle ScholarPubMed