Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T06:24:41.793Z Has data issue: false hasContentIssue false

Extra cytoproct mutant in Paramecium tetraurelia: a genetical study*

Published online by Cambridge University Press:  14 April 2009

Stephen F. Ng
Affiliation:
Zoology Department, Indiana University, Bloomington, Indiana 47401, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The basis of inheritance of the extra cytoproct (XP) character in Paramecium tetraurelia, stock d4-154, is shown to be nuclear and probably a single dominant gene, Ec, with reduced penetrance in heterozygotes. When the mutant gene is replaced by its wild-type allele, loss of the XP phenotype in some lines of descent occurs before 15 cell generations, but in more than half of the lines this occurs after 15–120 or more cell generations. The possibility is considered that these extremely long and variable ‘lags’ may be due to extranuclear (cortical) inheritance of cortical changes initially produced by gene action.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Allen, R. D. (1969). The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. Journal of Cell Biology 40, 716733.CrossRefGoogle ScholarPubMed
Beisson, J. & Sonneborn, T. M. (1965). Cytoplasmic inheritance of the organisation of the cell cortex in Paramecium aurelia. Proceedings of the National Academy of Sciences, U.S.A. 53, 275282.CrossRefGoogle ScholarPubMed
Corliss, J. O. (1953). Silver impregnation of ciliated protozoa by the Chatton-Lwoff technique. Stain Technology 28, 97100.CrossRefGoogle Scholar
De Garis, C. F. (1935). Heritable effects of conjugation between free individuals and double monsters in diverse races of Paramecium caudatum. Journal of Experimental Zoology 71, 209256.CrossRefGoogle Scholar
Dippell, R. V. (1968). The development of basal bodies in Paramecium. Proceedings of the National Academy of Sciences, U.S.A. 61, 461468.CrossRefGoogle ScholarPubMed
Frankel, J. (1973). Dimensions of control of cortical patterns in Euplotes: the role of preexisting structure, the clonal life cycle and the genotype. Journal of Experimental Biology 183, 7194.Google Scholar
Frankel, J. (1975). Pattern formation in ciliary organelle systems of ciliated protozoa. In Cell Patterning. Ciba Foundation Symposium, no. 29 (N.S.), pp. 2549. Amsterdam: Associated Scientific Publishers.Google Scholar
Heckmann, K. & Frankel, J. (1968). Genic control of cortical pattern in Euplotes. Journal of Experimental Zoology 168, 1138.CrossRefGoogle ScholarPubMed
Kung, C. (1971). Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics 69, 2945.CrossRefGoogle ScholarPubMed
Maly, R. (1958). Eine genetisch bedingte Störung der Zelltrennung bei Paramecium aurelia. var. 4. Ein Beitrag zum Problem der Mutabilitat plasmatischer Systeme. Zeitschrift für Vererbungslehre 89, 397421.Google Scholar
Ng, S. F. (1976 a). Extra cytoproct mutant in Paramecium tetraurelia: phenotype and biometrical analysis. Protistologica, in press.Google Scholar
Ng, S. F. (1976 b). Extra cytoproct mutant in Paramecium tetraurelia: morphogenetical analysis of proters and opisthes. Journal of Experimental Zoology, in press.CrossRefGoogle ScholarPubMed
Preer, J. R. Jr, Preer, L. B. & Jurand, A. (1974). Kappa and other endosymbionts in Paramecium aurelia. Bacteriological Reviews 38, 113163.CrossRefGoogle ScholarPubMed
Sonneborn, T. M. (1940). The relation of macronuclear regeneration in Paramecium aurelia to macronuclear structure, amitosis and genetic determination. Anatomical Record 78, 5354.Google Scholar
Sonneborn, T. M. (1943). Gene and cytoplasm. I. The determination and inheritance of the killer character in variety 4 of Paramecium aurelia. II. The bearing of determination and inheritance of characters in Paramecium aurelia on problems of cytoplasmic inheritance, pneumococcus transformations, mutations and development. Proceedings of the National Academy of Sciences, U.S.A. 29, 329–43.CrossRefGoogle Scholar
Sonneborn, T. M. (1950). Methods in the general biology and genetics of Paramecium aurelia. Journal of Experimental Zoology 113, 83148.Google Scholar
Sonneborn, T. M. (1963). Does preformed structure plan an essential role in cell heredity? In The Nature of Biological Diversity (ed. Allen, J. M.), pp. 165221. New York: McGraw-Hill.Google Scholar
Sonneborn, T. M. (1970). Gene action in development. Proceedings of the Royal Society, London B 176, 347366.Google ScholarPubMed
Sonneborn, T. M. (1970). Methods in Paramecium research. Methods in Cell Physiology 4, 241339.CrossRefGoogle Scholar
Sonneborn, T. M. (1974). Paramecium aurelia. In Handbook of Genetics, vol. 2 (ed. King, R. C.), pp. 469594. New York: Plenum Press.CrossRefGoogle Scholar
Sonneborn, T. M. & Lynch, R. S. (1934). Hybridization and segregation in Paramecium aurelia. Journal of Experimental Zoology 67, 172.CrossRefGoogle Scholar
Yeung, K. K. (1965). Maintenance of kappa particles in cells recently deprived of gene K (stock 51, syngen 4) of Paramecium aurelia. Genetical Research 6, 411418.CrossRefGoogle Scholar