Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T08:37:18.208Z Has data issue: false hasContentIssue false

Esterase alleles of inbred mouse strains maintained in The Netherlands

Published online by Cambridge University Press:  14 April 2009

J. Hilgers*
Affiliation:
Division of Tumor Biology, The Netherlands Cancer Institute (Antoni van Leeuwenhoekhuis), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
O. von Deimling
Affiliation:
Institute of Pathology, University of Freidburg i. Br., Federal Republic of Germany
L. F. M. van Zutphen
Affiliation:
Department of Laboratory Animal Science, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
R. ten Berg
Affiliation:
Division of Tumor Biology, The Netherlands Cancer Institute (Antoni van Leeuwenhoekhuis), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
R. Anand
Affiliation:
National Institute of Immunology, New Delhi, India
M. F. W. Festing
Affiliation:
MRC Experimental Embryology and Teratology Unit, Woodmansterne Road, Carshalton, England
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fifty-seven mouse strains were examined for genetic variation at 21 esterase loci. Three new alleles were found: Es-6d in strain A/WySna, Es-lle in FTC/CpbU and Es-18c in two WLL/BrA sublines. At most loci there was a single allele found in over 80% of strains, with one or two rare alleles. However, the Es-1, 3, 10, 13, 25 and 27 loci were much more polymorphic. Although several loci were linked on chomosomes 3, 8 and 9, linkage disequilibrium was only found between Es-5 and Es-11 (chromosome 8) and Es-26 and Es-27 (chromosome 3). There was also significant disequilibrium between Es-1 and 3, Es-1 and 10, and Es-3 and 10, which are on different chromosomes, suggesting that the 57 strains are not a random sample of inbred mouse strains. Fifty-four strains were closely related, with the Es-7b, –17a, –18a, –23c set of alleles, which are typical of Mus musculus domesticus. The three exceptional strains were MOL3 (Mus musculus molossinus), WLL/BrA (English–Norwegian origin) and TA2 (Chinese origin). There were 10 groups of strains which were identical at all loci. Sublines of the same strain were usually identical. Sometimes more distantly related strains, such as CBA/Bi, C3H/He, SM and DBA/Li, were identical, and in a few cases strains with no known common ancestry such as C58 and MAS were identical. Attempts to discriminate between a subset of 22 American and 15 European strains were unsuccessful, suggesting that the European strains add only in a quantitative manner to the gene pool of ‘laboratory mice’, whereas wild-derived strains such as MOL3 are genetically quite distinct from other laboratory mice.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Antonucci, T. K., Deimling, O. von, Rosenblum, B. B., Skow, L. C. & Meisner, M. H. (1984). Conversed linkage within a 4-cM region of mouse chromosome 9 and human chromosome 11. Genetics 107, 463475.CrossRefGoogle Scholar
Berning, W., De Looze, S. M. & Deimling, O. von (1985). Identification and development of a genetically closely linked carboxylesterase family of mouse liver. Comparative Biochemical Physiology 80 B, 859865.Google Scholar
Blackith, R. E. & Reyment, R. A. (1971). Multivariate Morphometrics. London, New York: Academic Press.Google Scholar
Bonhomme, F. & Selander, R. K. (1978). Estimating total genic diversity in the house mouse. Biochemical Genetics 16, 287297.CrossRefGoogle ScholarPubMed
Britton-Davidian, J. & Bonhomme, F. (1979). Deux nouveau locus d'estérases Es-14 et Es-15 chez les Souris (genre Mus L.): charactérisation par différents substrats et inhibiteurs. Compte rendu habdomadiare des séances de l'Académie des sciences 228, 14191422.Google Scholar
Chapman, V. (1973). Pers. Comm. Mouse News Letter 48, 45.Google Scholar
Deimling, O. von (1981). Pers. Comm. Mouse News Letter 65, 13.Google Scholar
Deimling, O. von (1982). Pers. Comm. Mouse News Letter 67, 16.Google Scholar
Deimling, O. von (1983). Pers. Comm. Mouse News Letter 69, 20.Google Scholar
Deimling, O. von (1984). Esterase-23 (Es-23): Characterization of a new carboxylesterase isozyme EC 3.1.1.1 of the house mouse, genetically linked to Es-2 on chromosome 8. Biochemical Genetics 22, 767788.Google Scholar
von Deimling, O. & De Looze, S. (1983). Human red cell butyryl-esterase and its homologies in thirteen other mammalian species. Human Genetics 63, 241246.CrossRefGoogle Scholar
von Deimling, O. & Forejt, J. (1987). Allelic profile at 36 biochemical loci of two inbred strains of the house mouse, derived from wild Mus musculus musculus. (Submitted.)Google Scholar
von Deimling, O. & Hilgers, J. (1983). Priv. Comm. Mouse News Letter 69, 20.Google Scholar
von Deimling, O., Otto, J. & Reske-Kunz, A. B. (1982). Esr, a second locus in the house mouse controlling esterase-5. Biochemical Genetics 20, 351358.CrossRefGoogle ScholarPubMed
von Deimling, O., Schupp, P. & Otto, J. (1981). Esterase-16 (Es-16): characterization, polymorphism and linkage to chromosome 3 of a kidney esterase locus of the house mouse. Biochemical Genetics 19, 10911099.CrossRefGoogle ScholarPubMed
von Deimling, O., Wassmer, B. & Müller, M. (1984). Esterase-26 (Es-26): characterization and genetic location on chromosome 3 of an eserine-sensitive esterase of the house mouse (Mus musculus). Biochemical Genetics 22, 11191126.CrossRefGoogle ScholarPubMed
Dunn, G. & Everitt, B. S. (1982). An Introduction to Mathematical Taxonomy. Cambridge: Cambridge University Press.Google Scholar
Eisenhardt, E. & von Deimling, O. (1982). Interstrain variation of esterase-22, a new isozyme of the house mouse. Comparative Biochemical Physiology 73 B, 719724.Google Scholar
Festing, M. F. W. (1979). Inbred Strains in Biomedical Research. Basingstoke: MacMillan.CrossRefGoogle Scholar
Festing, M. F. W. (1986). Inbred strains of mice. Suppl.Mouse News Letter, p. 14.Google Scholar
Festing, M. F. W. & Bender, K. (1984). Genetic relationships between inbred strains of rats. An analysis based on genetic markers at 28 biochemical loci. Genetical Research 44, 271281.CrossRefGoogle ScholarPubMed
Festing, M. F. W. & Lovell, D. P. (1981). Domestication and development of the mouse as a laboratory animal. In Biology of the House Mouse (ed. Berry, R. J.), pp. 4360. London, New York: Academic Press.Google Scholar
Frater-Schröder, M., Prochazka, M., Haller, O., Arwert, F., Porck, H. J., Skow, L. C., Lundin, L. G., Hilkens, J. & Hilgers, J. (1985). Localization of the gene for the vitamin B12 binding protein, transcobalamin II, near the centromere on mouse chromosome 11, linked with the hemoglobulin alpha-chain locus. Biochemical Genetics 23, 139153.CrossRefGoogle Scholar
Groen, A. (1977). Identification and genetic monitoring of mouse inbred strains using biochemical polymorphisms. Laboratory Animals 11, 209214.CrossRefGoogle ScholarPubMed
Hilgers, J., Van Nie, R., Ivanyi, I., Hilkens, J., Michalides, R., De Moes, J., Poort-Keesom, R., Kroezen, V., Von Deimling, O., Kominani, R. & Holmes, R. (1985). Genetic differences in BALB/c sublines. In The BALB/c Mouse; Genetics and Immunology (ed. Potter, M. pp. 1930.), Berlin: Springer Current Topics in Microbiology and Immunology; vol. 122.CrossRefGoogle Scholar
Hilkens, J., Hilgers, J., Demant, P., Michalides, R., Ruddle, F., Nichols, E., Holmes, R., Nie, R. van, Vandeberg, J. L. & Nikkels, R. (1981). Origin of and genetic relationship between the inbred mouse strains maintained at the Netherlands Cancer Institute. In Mammary Tumors in the Mouse (ed. Hilgers, J. and Sluyser, M.). Elsevier/North-Holland Biomedical Press.Google Scholar
Lindsey, J. R. (1979). Historical foundations. In U. J. Baker, J. R. Lindsey and S. H. Weisbroth, The Laboratory Rat, pp. 236. New York, London: Academic Press.Google Scholar
Lipps, A., Ronai, A. & von Deimling, O. (1979). Esterase-7, a common constituent of numerous mouse tissues. Comparative Biochemical Physiology 42 B, 201206.Google Scholar
Maxwell, A. E. (1977). Multivariate Analysis in Behavioural Research. London: Chapman Hall.Google Scholar
Medda, S., Von Deimling, O. & Swank, R. T. (1986). Identity of egasyn, the protein which complexes with microsomal β-glucuronidase and esterase-22. Biochemical Genetics, p. 24.CrossRefGoogle Scholar
Münz, M. & Von Deimling, O. (1985). Electrophoretic characterization of esterase-19 (ES-19), a new arylesterase of the house mouse (Mus musculus). Electrophoresis 6, 175178.CrossRefGoogle Scholar
Nash, H. R. (1981). Pers, Comm. Mouse News Letter 64, 66.Google Scholar
Nash, H. R. & von Deimling, O. (1982). Kidney esterase of Mus musculus: further polymorphism of esterase-6, esterase-9 and a new esterase, esterase-20. Biochemical Genetics 20, 537554.CrossRefGoogle Scholar
Otto, J. & von Deimling, O. (1983). Esterase-17 (Es-17): characterization and linkage to chromosome 9 of a new bis-p-nitrophenyl phosphate resistant esterase of the house mouse (Mus musculus). Biochemical Genetics 21, 3748.CrossRefGoogle Scholar
Peters, J. & Nash, H. R. (1976). Polymorphism of esterase-10 in Mus musculus. Biochemical Genetics 14, 119124.CrossRefGoogle ScholarPubMed
Peters, J. & Nash, H. R. (1977). Polymorphism of esterase-11 in Mus musculus, a further esterase locus on chromosome 8. Biochemical Genetics 15, 217226.CrossRefGoogle ScholarPubMed
Petras, M. L. (1963). Genetic control of a serum esterase component in Mus musculus. Proceedings of the National Academy of Sciences of the USA 50, 112116.CrossRefGoogle ScholarPubMed
Petras, M. L. & Biddle, F. G. (1967). Serum esterases in the house mouse, Mus musculus. Canadian Journal of Genetical Cytology 9, 704710.CrossRefGoogle ScholarPubMed
Petras, M. L. & Sinclair, P. (1969). Another esterase variant in the kidney of the house mouse, Mus musculus. Canadian Journal of Genetical Cytology 11, 97102.CrossRefGoogle ScholarPubMed
Popp, R. A. & Popp, D. M. (1962). Inheritance of serum esterases having different electrophoretic patterns. Journal of Heredity 53, 111114.CrossRefGoogle ScholarPubMed
Potter, M. & Klein, J. (1979). Genealogy of the more commonly used inbred mouse strains. In Inbred and Genetically Defined Strains of Laboratory Animals, (ed. Altman, P. A. and Katz, D.), part 1: Mouse and rat.Google Scholar
Roderick, T. H., Staats, J. & Womack, J. E. (1981). Strain distribution of polymorphic variants. In Genetic Variants and Strains of Laboratory Mouse (ed. Green, M. C.), Stuttgart, New York: Gustav Fischer.Google Scholar
Ruddle, F. & Roderick, T. (1965). The genetic control of three kidney esterases in C57BL/6J and RF/J Mice. Genetics 51, 445454.CrossRefGoogle ScholarPubMed
Schollen, J., Bender, K. & von Deimling, O. (1975). Esterase. XXI. Es-9, a possibly new polymorphic esterase in Mus musculus genetically linked to Es-2. Biochemical Genetics 13, 369377.CrossRefGoogle ScholarPubMed
Selander, R. K. & Yang, S. Y. (1969). Protein polymorphism and genie heterozygosity in a wild population of the house mouse (Mus musculus). Genetics 63, 653667.CrossRefGoogle Scholar
Staats, J. (1979). Inbred strains: mouse. In Inbred and Genetically Defined Strains of Laboratory Animals (ed. Altman, P. and Katz, D.), part 1: Mouse and rat.Google Scholar
Staats, J. (1985). Standardized nomenclature for inbred strains of mice: eighth listing. Cancer Research 45, 945977.Google ScholarPubMed
Taylor, B. A. (1972). Genetic relationships between inbred strains of mice. Journal of Heredity 63, 8386.CrossRefGoogle ScholarPubMed
Valk, M. A. van der (1981). Survival, tumor incidence and gross pathology in 33 mouse strains. Mammary Tumors in the Mouse (ed. Hilgers, J. and Sluyser, M.), Elsevier/North-Holland Biomedical Press.Google Scholar
Wallace, M. E. (1985). An inherited agent of mutation with chromosome damage in wild mice. Journal of Heredity 76, 271278.CrossRefGoogle ScholarPubMed
Womack, J. E. & Sharp, M. (1976). Comparative autosomal linkage in mammals: genetics of esterase in Mus musculus and Rattus norvegicus. Genetics 82, 665675.CrossRefGoogle ScholarPubMed
Womack, J. E., Taylor, B. A. & Barton, J. E. (1978). Esterase 13, a new mouse esterase locus with recessive expression and its genetic location on chromosome 9. Biochemical Genetics 16, 11071112.CrossRefGoogle ScholarPubMed
Zutphen, L. F. M. van (1983). Revision of the genetic nomenclature of esterase loci in the rat (Rattus norvegicus). Transplantation Proceedings 15, 16871688.Google Scholar