Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T09:41:49.387Z Has data issue: false hasContentIssue false

Environmental influences on puffing in the salivary gland chromosomes of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Barrie Burnet
Affiliation:
Department of Genetics, University of Sheffield
Ingeborg Hartmann-Goldstein
Affiliation:
Department of Genetics, University of Sheffield
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sequence of development of salivary gland chromosome puffs in Drosophila melanogaster cultured on live yeast and RNA-deficient medium has been studied in late larval and prepupal stages. Differences in puffing pattern between individuals cultured in the two environments are almost entirely due to shifts in the relative timing of puff development at specific chromosome sites. Detailed studies on the right arm of the second chromosome indicate that, at certain sites, puffing activity spreads to adjacent lettered subdivisions of the chromosome. There are differences in the extent of lateral spreading of activity into adjacent regions in the two environments which may be due to clustering of functionally related genes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Ashburner, M. (1967). Patterns of puffing activity in the salivary gland chromosomes of Drosophila. I. Autosomal puffing patterns in a laboratory stock of Drosophila melanogaster. Chromosoma (Berl.) 21, 389428.CrossRefGoogle Scholar
Ashburner, M. (1969). Patterns of puffing activity in the salivary gland chromosomes of Drosophila. IV. Variability of puffing patterns. Chromosoma (Berl.) 27, 156177.CrossRefGoogle ScholarPubMed
Bahn, E. (1968). Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas 58, 112.CrossRefGoogle Scholar
Becker, H. J. (1959). Die Puffs der Speicheldrüsenchromosomen von Drosophila melanogaster. I. Beobachtungen zum Verhalten des Puffmusters im Normalstamm und bei zwei Mutaten, giant und lethal-giant-larva. Chromosoma (Berl.) 10, 654768.CrossRefGoogle Scholar
Becker, H. J. (1962). Die Puffs der Speicheldrüsenchromosomen von Drosophila melanogaster. II. Die Auslösung der Puffbildung, ihre Spezifität und ihre Beziehung zur Funktion der Ringdrüse. Chromosoma (Berl.) 13, 341384.CrossRefGoogle Scholar
Beermann, W. (1952). Chromomerenkonstanz und spezifische Modifikationen der Chromosomenstruktur in der Entwicklung und Organdifferenzierung von Chironomua tentane. Chromosoma (Berl.) 5, 139198.CrossRefGoogle Scholar
Berendes, H. D. (1965). Salivary gland function and chromosomal puffing patterns in Drosophila hydei. Chromosoma (Berl.) 17, 3577.CrossRefGoogle ScholarPubMed
Berendes, H. D. (1967). The hormone ecdysone as an effector of specific changes in the pattern of gene activities of Drosophila hydei. Chromosoma (Berl.) 22, 274293.CrossRefGoogle ScholarPubMed
Berendes, H. D. (1968). Factors involved in the expression of gene activity in polytene chromosomes. Chromosoma (Berl.) 24, 418437.CrossRefGoogle ScholarPubMed
Berendes, H. D., Breugel, F. M. A., van, & Holt, Th. K. H. (1965). Experimental puffs in, salivary gland chromosomes of Drosophila hydei. Chromosoma (Berl.) 16, 3546.CrossRefGoogle ScholarPubMed
Bridges, C. B. (1935). Salivary chromosome maps. With a key to the banding of the chromosomes of Drosophila melanogaster. Journal of Heredity 26, 6064.CrossRefGoogle Scholar
Burnet, B. & Sang, J. H. (1963). Dietary utilization of DNA and its derivatives by Drosophila melanogaster (Meig.). Journal of Insect Physiology 9, 553562.CrossRefGoogle Scholar
Callan, H. G. (1967). The organisation of genetic units in chromosomes. Journal of Cell Science 2, 17.CrossRefGoogle ScholarPubMed
Clever, U. (1961). Genaktivitäten in den Riesenchromosomen von Chironomus tentane und ihre Beziehung zur Entwicklung. I. Genaktivierung durch Ecdyson. Chromosoma (Berl.) 12, 607675.CrossRefGoogle Scholar
Clever, U. (1967). Control of chromosome puffing. In The Control of Nuclear Activity, (ed. Goldstein, L.). Englewood Cliffs, New Jersey. Prentice-Hall Inc.Google Scholar
Daneholt, B., Edström, J. E., Egyhazi, E., Lambert, B. & Ringborg, U. (1969). RNA synthesis in a Balbiani Ring of Chironomus tentans salivary gland cells. Chromosoma (Berl.) 28, 418429.CrossRefGoogle Scholar
Judd, B. H. (1964). The structure of intralocus duplication and deficiency chromosomes produced by recombination in Drosophila melanogaster, with evidence for polarized pairing. Genetics 49, 253265.CrossRefGoogle ScholarPubMed
Keyl, H. G. (1965 a). Duplikationen von Untercinheiten der chromosomalen DNS während der Evolution von Chironomus thummi. Chromosoma (Berl.) 17, 139180.CrossRefGoogle ScholarPubMed
Keyl, H. G. (1965 b). A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experentia (Basel) 21, 191193.CrossRefGoogle ScholarPubMed
Kroeger, H. (1960). The induction of new puffing patterns by transplantation of salivary gland nuclei into egg cytoplasma of Drosophila. Chromosoma (Berl.) 11, 129145.CrossRefGoogle ScholarPubMed
Kroeger, H. (1964). Zellphysiologische Mechanismen bei der Regulation von Genaktivitäten in den Riesenchromosomen von Chironomus thummi. Chromosoma (Berl.) 15, 3670.CrossRefGoogle Scholar
Lewis, E. B. (1964). Genetic control and regulation of developmental pathways. In The Role of Chromosomes in Development (ed. Locke, M.). New York and London: Academic Press.Google Scholar
Lychev, V. A. (1965). A study of chromosome activity in the case of continuous inbreeding in Drosophila melanogaster. Tsitologiya (U.S.S.R.) 7, 325333. (In Russian.)Google Scholar
Lychev, V. A. & Medvedev, Zn.A. (1967). Some methodological aspects of the study of puffs in salivary gland polytene chromosomes of Diptera in experimental investigations of the influence of different factors on the chromosomes. Genetika (U.S.S.R.) 8, 5359. (In Russian.)Google Scholar
Mechelke, F. (1961). Das Wandern des Aktivitätsmaximums im BR4-Locus von Acricotopus lucidus als Modell für die Wirkungsweise eines Komplexen Locus. Naturwissenschaften 48, 29.CrossRefGoogle Scholar
Pelling, C. (1964). Ribonukleinsäure-Synthese der Riesenchromosomen. Autoradiographische Untersuchungen an Chironomus tentans. Chromosoma (Berl.) 15, 71122.CrossRefGoogle ScholarPubMed
Ritossa, F. M. (1964). Experimental activation of specific loci in polytene chromosomes of Drosophila. Experimental Cell Research 35, 601607.CrossRefGoogle ScholarPubMed
Robertson, F. W. (1959). Studies in quantitative inheritance. XII. Cell size and number in relation to genetic and environmental variation of body size in Drosophila. Genetics 44, 869896.CrossRefGoogle ScholarPubMed
Robertson, F. W. (1960). The ecological genetics of growth in Drosophila. I. Body size and development time on different diets. Genetical Research, 1, 288304.CrossRefGoogle Scholar
Sang, J. H. (1956). The quantitative nutritional requirements of Drosophila melanogaster. Journal of Experimental Biology 33, 4572.CrossRefGoogle Scholar
Whitten, J. M. (1969). Coordinated development in the foot pad of the fly Sarcophaga bullata during metamorphosis: changing puffing patterns of the giant cell chromosomes. Chromosoma (Berl.) 26, 215244.CrossRefGoogle Scholar