Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T06:11:00.165Z Has data issue: false hasContentIssue false

The effects of temperature on aberrant ascus frequencies at the Buff locus in Sordaria brevicollis

Published online by Cambridge University Press:  14 April 2009

A. F. Ahmad
Affiliation:
Botany School, University of Cambridge
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Single-point crosses using five allelic spore colour mutants at the buff locus were carried out at different temperatures. The data suggest (i) that fixed or preferred opening points in the DNA, required for initiation of recombination events, are available more often at higher than at lower temperatures, (ii) opening points at or beyond both proximal and distal ends of the buff locus respond similarly to variations in temperature, and (iii) the correction pattern seems to be independent of temperature at the buff locus in S. brevicollis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Bond, D. J. (1969). Genetic recombination in Sordaria brevicollis. Ph.D. thesis, University of Cambridge.Google Scholar
Bond, D. J. (1973). Polarity of gene conversion and post-meiotic segregation at the buff locus in Sordaria brevicollis. Genetical Research 22, 279289.CrossRefGoogle ScholarPubMed
Boucharenc, M., Mousseau, J. & Rossignol, J. L. (1966). Sur l'action de la temperature sur la fréquence des recombinaisons réciproques et non réciproques au sein du locus 75 de l'Ascobolus immersus. Compte Rendue de l'Académie des Sciences 262, 15891592.Google Scholar
Hastings, P. J. & Whitehouse, H. L. K. (1964). A polaron model of genetic recombination by the formation of hybrid deoxyribonucleic acid. Nature 201, 10521054.CrossRefGoogle ScholarPubMed
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genetical Research 5, 282304.CrossRefGoogle Scholar
Lamb, B. C. (1968). Gene conversion: temperature data from Sordaria fimicola on the correction of mispaired bases. Nature 217, 353354.CrossRefGoogle Scholar
Lamb, B. C. (1969). Related and unrelated changes in conversion and recombination frequencies with temperature in Sordaria fimicola, and their relevance to hybrid-DNA models of recombination. Genetics 62, 6778.CrossRefGoogle ScholarPubMed
Leblon, G. & Rossignol, J. L. (1973). Mechanism of gene conversion in Ascobulus immersus. III. The interaction of heteroalleles in the conversion process. Molecular and General Genetics 122, 165182.CrossRefGoogle Scholar
McNelly-Ingle, C. A., Lamb, B. C. & Frost, L. C. (1966). The effect of temperature on recombination frequency in Neurospora crassa. Genetical Research 7, 169183.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1968). Statistical Methods, 6th ed., pp. 135140. Iowa State University Press.Google Scholar
Stamberg, J. & Simchen, G. (1970). Specific effects of temperature on recombination in Schizophyllum commune. Heredity 25, 4152.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1963). A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature 199, 10341040.CrossRefGoogle ScholarPubMed
Whitehouse, H. L. K. (1973). Towards an Understanding of the Mechanisms of Heredity, 3rd ed.Edward Arnold.Google Scholar